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Growth, microstructure, and failure of crazes in glassy polymers
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We report on an extensive study of craze formation in glassy polymers. Molecular dynamics simulations of
a coarse-grained bead-spring model were employed to investigate the molecular level processes during craze
nucleation, widening, and breakdown for a wide range of temperature, polymer chain leregttanglement
length N, and strength of adhesive interactions between polymer chains. Craze widening proceeds via a
fibril-drawing process at constant drawing stress. The extension ratio is determined by the entanglement length,
and the characteristic length of stretched chain segments in the polymer chyZ8.i¢n the craze, tension is
mostly carried by the covalent backbone bonds, and the force distribution develops an exponential tail at large
tensile forces. The failure mode of crazes changes from disentanglement to scissifNfer 10, and
breakdown through scission is governed by large stress fluctuations. The simulations also reveal inconsisten-
cies with previous theoretical models of craze widening, which were based on continuum level hydrodynamics.
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[. INTRODUCTION micrometers. We are thus limited to a study of craze widen-
ing in a small representative region and cannot include, e.g.,
The failure of glassy polymers such as polystyr¢R§  the entire crack tip. Craze tip advance proce$8¢sre be-
or polymethylmethacrylatéPMMA) under external stresses yond the scope of the present work.
occurs either through shear deformation or through crazing Several aspects of craze physics have already been ad-
[1,2]. While shear yielding occurs essentially at constant vol-dressed with simulations in previous papers. Baljon and Rob-
ume, crazing has a strong dilational component, and the volins[9,10] demonstrated the importance of chain length for
ume of the material increases to several times its originalhe onset of craze growth. Rottlet al. studied the elastic
value before catastrophic fracture occurs. Crazing is a failur@roperties and the fracture stresses of fully evolved crazes
mechanism unique to entangled polymeric materials and us@nd used them in combination with linear fracture mechanics
ally precedes a crack tifsee Fig. 1 The fundamental and to calculate the macroscopic fracture energy of glassy poly-
technological importance of crazes is that they are in parfners that fail by crazing6]. Rottler and Robbins also inves-
responsible for the large fracture ener@ of polymer tigated how polymer entanglements affect the craze structure
glassed3-6], which makes them useful load-bearing mate-0n a microscopic level and argued that they “jam” the ex-
rials. They control the crack tip advance and require a larg@ansion of the glass under tensidr].
amount of energy dissipation up to the point of catastrophic This paper extends the previous work and is organized as
failure. Crazes can reach several micrometers in width anépllows. In Sec. Il, we summarize the key experimental ob-
consist of an intriguing network of fibrils and voids, which servations and review the existing theoretical models of craz-
spans the entire deformed region. ing. Section Il gives the technical details of the molecular
Despite the frequent appearance of crazes, there is still
comparatively little theoretical understanding about the con- o
ditions and mechanisms of craze nucleation, growth, and ul- craze widening
timate breakdowr{1-4,7,9. In this paper, we present an
extensive set of nonequilibrium molecular dynam{s4D)

simulations that address these various phenomena. In this Crack

approach, polymers are modeled on a coarse-grained scale

that takes into account van der Wa&sl\W) and covalent craze
interactions without specific reference to chemical detail. tip advance

The effect of chain length, temperaturewidening velocity dense! palymer glass

v, and vdW interaction strength on the craze structure can be - -
studied over a wide range of parameters. The molecular craze length | ~ 0.1 mm
simulations provide insight into microscopic processes that - | ~a7e fracture of glassy polymers. The craze is a de-
are not accessible to experiments and offer an opportunity tQ, .4 region(shadel that grows in width and length under an

test and develop the_ore_tmal models of crazing. . applied vertical stresS. Its density is reduced with respect to the
A fundamental limitation on molecular level treatments is yngeformed polymer by a constant extension rati€haracteristic
of course the finite system size. The largest volumes accega|yes for widthd and length are indicated. During growtts acts
sible at present are-100 nn¥, while the craze spans many perpendicular to the sharp interface between undeformed polymer
and craze. Also shown is an advancing crack tip from the left that
breaks the craze. Small representative volumes of each region are
*Electronic address: Joerg.Rottler@jhu.edu studied with molecular simulations.
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eformed D e zone at the interface between the dense polymer and the
h active zon craze. The width of the active zorte(see also Fig. Ris
usually betweeqdD) and(Dg). Craze widening is a steady-
state process, in which a constant “drawing streéSsdnging

o between 20 and 100 MPa is applied. Typical experimental
<D> z values are 35 MP#polystyreng [15] and 70 MPa(polym-
“.; ethylmethacrylate[24]. The value ofSis of the same order
<Dy> '§ as the shear yield stress of the polymer, and is found to
increase with the entanglement density.
FIG. 2. Surface tension model of craze widening. Void fingers B. Theory

with characteristic spacingDo) propagate into a strain-softened A theory of crazing has to explain the molecular origin of
layer of polymer fluid of widthh, leaving behind fibrils of a char-  the craze structure and the interdependencies of the various
acteristic diamete(D). The externally applied stressacts perpen- antities measured in experiments. Despite a wealth of ex-
dicular to the fluid-glass interface. The characteristic radius of thpperimental data on crazing, there is currently no theoretical
finger caps is of the order ¢Do)/2. (See Refs[8,15] for an analo-  jaqerintion that addresses all aspects of craze physics. The
gous figure) following models have been proposed to explain the exten-
O§ion ration and the relationship between fibril spaci@,)

models used in this study. We then analyze the results f Ind drawing stress

craze nucleatiorfSec. I\V), growth (Sec. \j, microstructure
(Sec. V), and failure(Sec. VII), and compare our findings to

; . . . 1. The extension ratiax
previous models and experiments. Final conclusions are of-

fered in Sec. VIII. The extension ratia. has been successfully explained by
a simple scaling argument that relatego the microscopic
Il. CRAZE PHENOMENOLOGY AND THEORY entanglement network in the polymer glass. Entanglements
arise in dense polymeric systems from the topological con-
A. Experiments straints that the chains impose upon each other. The mobility

Crazes have been studied experimentally for more than 30f the chains is greatly restricted because they cannot pass
years[8,12—15. The techniques most commonly used to through each other. _The starting point for t_he present argu-
analyze the craze structure are transmission electron micro§2ent is the assumption that the glass inherits these entangle-
copy (TEM) [16,17), low angle electron diffraction, and Ments from the melt, where an entanglement molecular
small angle x-ray scatterinfl8—20. Comprehensive re- Weight is given by the plateau modulus under sheg :
views of theoretical and experimental results have been pre- ©)
sented by Kramer and BergE8,15] and Cretoret al. [21]. Me=p4RT/SGY”. (1)

The density of the undeformed polymer,, and craze, _ ) ) )
p;, is obtained from TEM measurements. The increase iy his result can be derived from the microscopic tube model

volume during craze formation, or extension ratio [25], which relates t_he rheological response of the ponmgr
=p./p;, is found to have a characteristic value for a given_melt to_ the def_ormatlon of a tube to_ which the polyme_r chain
polymer that is independent of molecular weight. Typical'S gonflned. With repeat units of weighty, one can define a
values of\ for different polymers range from two to seven. YPical number of stepsle=M./M, (entanglement length

Real space images of the craze show that the polymers aR¢tween entanglements along the polymer backbone.
bundled into fibrils that merge and split to form an intricate 1 NeS€ entanglements are assumed to act like permanent
network. The fibrils are highly aligned with the applied ten- chemlcgl crosslinks during crazing, which implies that the
sile stress and vary in diameter and length. However, thi€XPansion ends when segments of lengtp are fully
complex structure is normally idealized as a set of uniformstrétched. Tlt‘ze initial separation of entanglement points is
vertical cylinders connected by short cross-tie fibj@s The ~ di=(lploNe)™, according to standard random walRW)
characteristic fibril diamete¢D) and separatiofD,) (see ~ Scaling, wherel, is an elementary step length aig the
Fig. 2) are then determined from a Porod analysis of scatterfPersistence length. The length of this segment rises fipm
ing experiments(see Sec. Y Measured values range be- t0 @ maximum final lengtltl; =X 2,di=Nelo, and thus
tween 3-30 nm for(D) and 20-50 nm for(D) B 12
[8,15,22,23. For example, for polystyrene one obtai(i3) AMmax= (Nelo/1p) ™% @)
~6 nm and(Dy)~20 nm[1].

Nucleation of craze$13] occurs preferentially near de-
fects in the polymer. These produce large local tensil
stresses that lead to the formation of microvoids that evolv
into a craze. Once nucleated, the craze grows in length and
width (see Fig. L It is well established8] that the craze
widens by drawing material from the dense polymer into The value of the drawing stresshas traditionally been
new fibrils. This deformation is confined to a narrow activerelated to the craze microstructurg(), (D)) via capillary

Experimentally, Eq.(2) is well confirmed, but Sec. VD
eshows that the picture motivating this expression is oversim-
@In‘led.

2. The drawing stress S
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models[8,15]. In these models, the polymer in the active In this bead-spring model, van der Waals interactions be-

zone is treated as a viscous fluid with a surface teniand  tween beads separated by a distana@e modeled with a

a viscosity . Figure 2 shows an idealized picture of the truncated Lennard-Jones potential

craze geometry, where craze formation is modeled as the

propagation of void fingers with a characteristic spacing  Vyy(r)=4ug[(a/r)*?—(a/r)®—(a/r)*?+(alr.)®] (6)

(Dy) into the strain-softened fluid. The applied str&sse-

quired to advance the interface has a dissipative contributiofor r<r., whereug~20-40 meV anda~0.8—-1.5 nm are

arising from a suitable flow lawe.g., power-law fluiland  characteristic energy and length scdl29], respectively. A

an energetic contribution due to the surface tension. The tersimple analytic potentigl28]

sion is S in the polymer glass and the Laplace pressure

2I'/({(D¢)/2) at the ceiling of the finger, whek®)/2 is the V(1) ==Ky (r—Rp)3(r—Ry) (7)

characteristic radius of curvatufsee Fig. 2 By estimating

the width of the active zone ds~(Dg)/2, Kramer calcu- is used for covalent bonds between adjacent beads along the

lated a stress gradient between the glassy polymer and tledain. The form of this potential was chosen to allow for

finger void ceiling[15], covalent bond breaking, which is not possible with other
standard bond potentials such as the popular finitely exten-

Ao S—4T/(Dy) sible nonlinear elastiFENE) potential[26]. Bonds are per-

“h T (Dgl2 ) manently broken whem exceedsR,=1.5a. The constant
R;=0.757% was chosen to set the equilibrium bond length

Since Vo is proportional to the interface velocity, he then 1,=0.96a, which is the “canonical” value for the bead-

Vo

predicted that the system will select a value of spring model with the FENE potentig26]. This allows us to
use results from previous studies, most importantly the en-
(Do)~8I'/S, (4 tanglement length. The constaki determines the ratio of

) . . . .the forces at which covalent and van der Waals bonds break.
which maximizes the stress gradient between the finger ceilye fing that this ratio is the only important parameter in the

ing and the bulk polymer and, thus, will lead to the fastesiyoyajent potential and set it to 100 based on data for real

propagation velocity of the fingers. polymers[27,28, which impliesk, = 2351u,/a*. Tests with
More recently, Krupenkin and Fredricks¢d] have for-  qiher analytical forms of the bond potential showed no ap-

mulated a theory of craze widening that is similar in spirit topreciable impact on our results as long as the bonds break

Kramer's arguments and also equates the craze wideningsfore the chains can pass through each other.

stress with a viscous and a surface tension contribution. |4 order to vary the entanglement length, we include a
However, these authors suggest a different interpretation GEond-bending potentidl8,30

I'. They introduce an effective surface tension that begins to

rise above the vdW value when the finger radius rises above N-1 - - -

the rms spacing between entanglement lengthsThis an- Vg=b Z 1— ([‘*1_?)'(2‘_2‘*1) (8)
satz is motivated by the idea that expanding the random walk i=2 [(ri_a=r)ll(ri—=ri 1]

between entanglements generates an additional energy pen-

alty. An upper bound td" is provided by the energy required that stiffens the chain locally and increases the radius of
for chain breaking, which sets in once the finger radius exgyration. Here; denotes the position of thi¢h bead along
ceeds the maximum elongation between entanglemeRke chain and characterizes the stiffness. We will consider
points, IoN,. By minimizing the finger propagation stress, two cases, referred to as flexiki¢) (b=0) and semiflexible

they conclude that the fibril spacing will always be (sfl) (b=1.5u,) polymers. The corresponding entanglement
lengths are N'~70 and NS"=30 beads, respectively
Do~di, ®  126,29,30.

independent of surface tension. In their model, the fibrii W€ consider three temperature$=0.01io/kg, T

spacing is determined exclusively by the entanglement net- 0.1uo/Ks , andT=O.3J0/l§3, where the last temperature
work. Is close to the glass transition temperature. The amount of

adhesive interaction between beads is varied by changing the
ranger . of the LJ potential from 1% to 2.2a.

The equations of motion are solved using the velocity

We study craze formation by performing molecular dy- Verlet algorithm with a time step ofit=0.0075;, where
namics simulations of a standard coarse-grained polymer ;= +ma?/uy is the characteristic time given by the LJ en-
model[26], where each linear polymer contaiNsspherical ~ergy and length scales. Periodic boundary conditions are em-
beads of mass. Models of this kind have a long tradition in ployed in all directions to eliminate edge effects. The tem-
polymer research and have verified theories of polymer dyperature is controlled with a Noggoover thermostat
namics[25] in the melt. They have recently been employed(thermostat rate 4, ;") that is only employed perpendicular
by other researchers to study failure in network polymer adto the direction of craze growth. Simulations with a Lange-
hesives[27] and end-grafted polymer chains between sur-in thermostat showed no appreciable difference between the
faces[28]. two methods.

Ill. SIMULATIONS AND MOLECULAR MODELS
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In all simulations of crazing, an initial isotropic state in a 1 - - -
cubic simulation cell of edge lengthis created using stan- shear yielding
dard techniquef29]. Polymer chains are constructed as ideal 08
RWs with a suitably chosen persistence lerigthl , is fixed ;
by matching the radius of gyration of the chains to the equi- 5 06
librium value in the melt, and the values dfe=1.65 and ey
11=2.7a for flexible and semiflexible chains, respectively. =S 04} &
Subsequently, the interaction potentials are imposed and the ’
system is cooled at constant volume from a melt temperature 02 ~
Tm=1.3ug/kg to the desired run temperature. _,?cavitationé) .

All runs begin at zero hydrostatic pressure. Strapsare 0 4 :
then imposed by rescaling the simulation box peribdand 3 -2 -1 0 1 2 3
all particle coordinates proportionatdlg1]. This allows the pa3/u0

study of the arbitrary stress states in Sec. IV.

FIG. 3. Octahedral shear stres, at yield as a function of
pressurep at two different temperatureE=0.3u,/kg (open sym-
bols) and T=0.01uy/kg (filled symbol3. The solid lines are fits to
Eq. (9) and the dashed lines show the onset of cavitation. Values of

The loading conditions on the polymer glass determinex are indicated for the two temperatures. Also drawn is a dotted line
whether it will fail initially by shear yielding or the forma- that separates the r(_agions of s_hear and cavitational failure. Here,
tion of voids and cavities. In general, strong triaxial tensileYi€ld is associated with the strain wherg, peaks.
stresses will favor cavitation. Cavitation and crazing are
closely related because crazes usually require the initial fowith new constantsg and «°. This new “cavitation crite-
mation of microvoids[8]. We, therefore, first address the rion” can be motivated in analogy to the von Mises criterion
initial failure of the polymer glass through either shear yield-by assuming that the elastic free enefgy associated with
ing or cavitation, and later discuss the formation of crazes.volume changes must reach a critical value for cavitation to

The loading conditions that lead to shear yielding in manyoccur.Fy, is proportional tgp?, which gives a criterion of the
experimental polymer$32,33 are most accurately repre- form p=p,. One can then assume that shear components in
sented by the pressure-modified von Mises yield criterion. Ithe stress tensor aid cavitation in a linear fashion, pe.,
is formulated in terms of simple stress invariants, the hydro=py+ 7,/ @., which can be rearranged to give Ed.0)
static pressur@= —(o1+ 0,+ 03)/3, and the deviatoric or with 5= ap,.
octahedral shear stress,=[ (01— 05)*+ (05— 03)°+ (03 No clear experimental consensus exists about the stress
—041)?]Y43, whereo; denote the three principal stress com- state required to initiate crazing, partly because of the impor-
ponents. The pressure-modified von Mises criterion stategince of surface defects in nucleating crazes. However, sev-
that yield will occur at an octahedral yield stregs, given  eral criteria for craze nucleation were proposed almost 30

IV. CRITERIA FOR CAVITATION AND CRAZE
NUCLEATION

by years ago. They all try to take into account the critical role of
tensile stress components. Sternsitiral. [35] suggested a
o= To+ ap, 9 craze yield criterion of the form
wherer is the yield stress at zero hydrostatic pressureand Tmax= 3|0~ 0j|max=A+BIp, (11

is a dimensionless constant. The physical motivation of Eq.

(9) is that the elastic free energy stored in shear deformation
. . 2 . . ~where A and B are constants that depend on temperature.
is proportional torg, and failure should occur when this

energy exceeds a threshold that rises slowly ith With respect to our criterion, Eq10), p has been replaced

X by 1/p and 7,y by the largest difference between any two
In Ref. [3.4]’ we _exammed a much Iarg_er range of Stresss ress components. Bowden and OxborojigHformulated a
states than in previous experimental studies and showed thgj

the pressure-modified von Mises criterion provides a good. llar criterion, wherermay is replaced by, —vo,—vos
L AR . and v is Poisson'’s ratio for the polymer glass. This expres-
description of shear yielding in our bead-spring model. Data

for two extremal temperatures are replotted in Fig. 3 alon sion provides another possibility to describe the shear com-

with solid lines showing fits to Eq9). Shear yielding was gponents of the stress state, and it reducesqig, when v

observed to the right of the dot-dashed line, and these da@ 1/2 ando,=o5. The Sternstein and the Bowden and Ox-

points follow Eq.(9) quite accurately. To the left of the line, orough expressions could, in principle, also be fitted to the

cavitation was observed. The deviation from the von Mi:sesrather narrow range of pressure in Fig. 3 where cavitation

o . occurs. However, we are unaware of a convincing physical
fits is very sharp, and, quickly drops to zero. The values 9 phy

of 75 where cavitation occurs are well described b amotivation for the 1p term, which leads to obvious analyti-
straTiaCrtlt line Y 8cal problems at smaj). In addition, the experimental results

that motivated Eq(11) are sensitive to surface defe¢ts3].
c ¢ e The above considerations pertain to tihdial mode of
Toct™ ToT &P, (10 failure of the polymer glass at strains typically less than
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FIG. 5. Three snapshots of craze growth for semiflexible chains
with T=0.1uy/Kg, r,=1.5a, and 262 144 beads.

twice the entanglement length or greater in order to form
stable crazes. For shorter chains, the material cavitates, but
FIG. 4. Three snapshots of craze growth for flexible chains withthen rapidly fails due to chain pullout. In the following, we

T=0.1ug/kg and ro=1.5a. The total system contains 262144 only consider chains wittN=2N,.

beads, but only slices of thicknessal@ormal to the page are  Note first that in all cases, there is a sharp interface be-
shown in order to resolve the fine structure. The lateral dimensiogyeen dense polymer and crazed material. This narrow “ac-
of each slice is 64 and the vertical direction is to scale. Each dot +je zone” is one of the key features of craze phenomenology
represents one Lennard-Jones bead. found in experiment. In the craze, the polymer chains have

0 o . ) . merged into fibrils that are strongly aligned. However, the
10/‘.)' However, crazing is a large strain deform_atmn .W_'thstructure is quite complex, since there are many lateral con-
strains of several hundred percent. Although we find voiding,

. I dections between fibers.
to be a necessary precursor to crazing, it is not guarantee

i s X ) One can also observe that the fine structure of the crazes
that a loading state that leads to cavitational failure according, ha three sequences varies greatly. Figure 4 with flexible
to Eqg. (10) will ultimately produce stable crazes. Likewise,

chains at the low temperature ot 0.1ug/kg and the weak
we have observed that an initial failure through shear defor P PR

. be foll db id f i g — adhesive interactiofcutoff distancer .= 1.5a) shows many
mation may be followed by void formation and crazing. Onep, fibrils, whereas the fibrils in Fig. 6 at the higher tem-
should thus strictly call Eq.10) a cavitation failure criterion
and not a craze yielding criterion.

V. GROWTH OF CRAZES

In order to induce crazing, we enforce cavitation by ex-
panding the periodic simulation box in tledirection at
constant velocity while maintaining the simulation box peri-
ods in the perpendicular-y plane. This leads to an initial
stress state where all three principal stresses are tensile. T
initial voids formed during cavitation expand upon further
straining, but their growth rapidly becomes arresféd.
Instead of forming new voids, additional material is drawn
out of the uncavitated polymer, and stable craze growth oc
curs. In our simulations, growth continues until all the mate
rial in the simulation box is converted into the craze.

A. Images of crazes

A good impression of the crazing process can be obtaine
by inspecting the snapshots of the simulation cell shown i
Figs. 4—6. Each slice has a lateral width ofag4nd three
different strains are shown. In all images, the chain length FIG. 6. Three snapshots of craze growth for semiflexible chains
N=512. Previous studielsl0] had shown thal has to be  with T=0.3uy/kg, r.=2.2a, and 262 144 beads.
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L,/L FIG. 8. (a) Trends ofSwith T andr. atv =0.06a/ 7, for flex-

ible (W) and semiflexible A) chains and .=1.5a (lower curve$

FIG. 7. Stressr,, in the widening direction during craze growth andr.=2.2a (upper curves (b) Velocity dependence & for flex-
at T=0.1ug/kg, rc=1.5 for (a flexible and (b) semiflexible  ible chains aff=0.1uy/kg . The straight line is a fit to a logarith-
chains of lengthN=128, N=256, N=384, andN=512. Three mic velocity dependencéa’s/uoz 1.085+0.048In¢ 7 ;/a). Un-
characteristic regimes: |, cavity nucleation; I, craze growth; and Ill,certainties are comparable to symbol sizes.
craze failure are also indicated. The two perpendicular stress com-
ponentsoy, and oy, also peak at cavitatiofisee text, but then
rapidly drop to zero. Curves obtained at other value¥ ahdr . are
qualitatively identical.

differentN in Fig. 7 only split apart after the completion of
craze growth wher,/L reaches\ and the entire craze is
strained. Baljon and Robbingl0] showed that the peak
perature ofT=0.3uy/kg and the stronger adhesive interac- stress remained constant for much shorter chains, but that
tion r.=2.2a are much thicker in diameter. These trends argregime Il only appeared whex was 2N, or longer. Another

not surprising, because increased chain mobility at higheimportant fact to note is thais independent of system size.
temperatures and stronger adhesive interactions should driveor example, values d&in systems ranging between 32 768
the system to larger fibril diameters, which minimize theand 1048576 beads are the same within a few percent. The

surface area. only substantial change with increasing system size is that
temporal fluctuations irs decrease.
B. The drawing process and stress-strain curves In Fig. 8@, we analyze trends dB with T andr.. The

drawing stress decreases linearly with increasing temperature
bnd increases with increasing adhesive interact{ons in-
_creasing ;). Figure 8§b) shows thatS varies logarithmically

With the widening velocity over two orders of magnitude,

curves.shown n _F|g. ’. The_curves can be s.eparated N hich is indicative of a thermally activated process. For the
three different regimes. In regime I, the stress rises to a pe

of ~2.6u5/a° and then drops when the polymer yields by bsequent figures, we choase 0.06a/ 7 ;, which is at the

Lo : e i d of the logarithmi imé&o]. L ithmic rate
cavitation. Following cavitation, the stress rapidly relaxesquIoer end of the logarithmic reginje0]. Logarithmic ra

q . t the plat 8a . i th h dependence is also found for the shear yield stress of glassy
and remains at the plateau val8en regime Il, the grow polymers[34,36).

regime. Regime Il is much shorter in the semiflexible case,
Fig. 7(b), than in the flexible case, Fig(a (note different
lateral scales Regime Il ends when the strain /L reaches
the extension ratio.. At this point, all the material in the The results of Sec. IV show that cavitation only occurs
simulation cell has been converted into the craze, and anywhen all three principal stresses are tensile. Many experi-
additional deformation strains the entire craze uniformly. Asmental crazes grow in a thin film geometry under plane
a consequence, the stress rises again in regime lll. This retress conditions. However, in these experiments the craze is
gime finally ends in catastrophic failure either through chainoften prenucleated or nucleates near a ddfe8} This situ-
disentanglement or chain scissiee Sec. VL ation can also be mimicked in our simulations. To this end,
Note first that neither the peak stress at cavitation nor théhe periodic boundary conditions in tixedirection were re-
value of S depends on the chain lengthh The curves for placed with free boundaries, so that the solid is free to relax

deformation occurs at a constant plateau or drawing s8ess

C. Crazing under plane stress conditions
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0 20 40 60 80 100120
z/a

FIG. 10. Density profile through the active zone for crazes with
flexible chains N.~70) and semiflexible chaindN¢~30). Hori-
zontal lines indicate the average density in the craze for the two
cases.

polymer glass during deformation on a microscopic level
(see also Ref[11]). Figure 11a) shows the average final
position of beads in the completely evolved craze as a func-
tion of their initial positions along the direction of expansion
(z axis). The average was taken over all beads with initial
heights in a bin of width &. Although the strain rate is
strongly localized during the craze process, the ultimate dis-
placement profile is lineag;=\z; .

FIG. 9. Cross sections through a craze with a free interface at To measure deviations from a purely affifusmiform) de-
T=0.1ug/kg, rc=1.5a, and 262144 beads. Periodic boundary formation, we evaluated the rms variatiém in z; for beads
conditions were maintained in the direction into the plane. The lo4n each bin. This quantity is indicated by error bars in Fig.
cation of initial cavitation was constrained by placing repulsive 11(a). Note that the variation in each bin is very reproduc-
beads in the_ centgr plapeat:LZ/Z. The lateral dimension is 47  jple. We find thatsz is nearly independent 6f andr, and
and the vertical dimension is to scale. has values of the order of a%nd % for flexible and semi-

. N . . . . flexible chains, respectively.

in that direction. Initial failure is then nucleated by placing  gjnce no strain is applied in the perpendicuiaand y

1000 purely repulsive LJ beads in the center plane of thejirections, one would assume that there is, on average, no

simulation cell located az=L,/2 [37]. This weakens the gisniacement in these directions. That this is indeed the case

solid locally and constrains the location of initial failure, s shown in Fig. 12, which repeats the analysis of Fig. 11 for

while not affecting subsequent craze growth. the x direction. Average final bead positions are identical to
Figure 9 shows three snapshots of a craze in this geomyitia| positions, but there are lateral variations that are

etry. As in experiments, necking is observed at the craze-bulff,icated by error bars. These lateral displacements allow the
interface. Althougho,, vanishes in the rest of the film, the

neck produces strong tensile stresses in all three directions ir 4 20 ®)

the active zone. The craze grows in the same manner as ir &

the simulations with three-dimension@D) periodic bound- < 8 15

ary conditions. Since the latter yield better statistics for the & = 10

craze structure, we have focused on this methodology for our% A

analysis. N1 45

V 7,
D. The extension ratio 0 20 40 60 0 50 100 150
The extension ratid can be calculated from the average z;/a AN

densities of crazed and uncrazed materials. Figure 10 shows
how the density drops from the initial valyg to p; in the

craze. As can be seem; is higher for the semiflexible
chains, which have a smaller value M{~30. Remarkably,

we find .that)\ IS a functlon OfNe_ only gnd decreases with tively. Error bars represent a standard deviatfonfrom the aver-
decreasing\.. For instance, while an increase Thandr ages in each layer and are of the order of 1flexible) and %
prod.uces drz?\matlc coarsening of the fibril sfcructure in Fig. 6(semiﬂexible. (b) Square of the height changez as a function of
relative to Fig. 4,\ is unchanged. We obtain values ©f  the number of covalent bondsN between a bead and the chain
=6.0+0.6 and\¢=3.5+0.3 independent oN, T, and ad-  center. Dashed straight lines have slogé,l/3 with A from (a).
hesive interaction strength. Deviations from the RW scaling occur in the vicinity of the chain

In order to understand the dependence of the macroscopéhds(not shown. Other systems at differefit, r, andN show the
guantity A on N, we analyze the structural changes in thesame results.

FIG. 11. (a) Final bead heightg; as a function of initial heights
z; for flexible (large slopg and semiflexible(small slopg chains
(T=0.1ug/kg, ro=1.5a). Averages were calculated oveintervals
of width a. Straight lines have slope=5.9 and\=3.5, respec-
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FIG. 12. Analysis of bead positions analogous to the previous 10
figure (same systemsbut for thex positions. No strain is applied in 0 20 40 60 80 100120 140
this direction, and the straight lines in paii@l have slope one. The Nst
curves for the semiflexible chains (@) were displaced vertically 100
upward by 1@ to avoid overlap. Error bars represent a standard a)’_\\ (b)
deviation 6x from the averages, and are of the order ofa3(flex- =)
ible) and 2.2 (semiflexible. (b) Bead displacements as a function &'
of distance from the chain center in bond lengthd®l, along the Y 1 N
chain. Dashed lines have slof/3. é 10 N=21+2
chains to gather in fibrils at the initial density to minimize g” N N
surface area. Unlike the vertical displacemesits these lat- % N=11+1 “‘»_‘,M:\
eral displacements depend strongly ®randr.. For ex- = 10—2 -t %
ample,6x~2.5a for the fine structure shown in Fig. 4 where 3 R

0 20 40 60 80 100 120

many thin fibrils can be seen, whilgx~5.6a for the much
coarser structure of Fig. 6. In generék correlates with the AN
spacing between fibrils as discussed in Sec. VI and is less
than d;. Krupenkin and Fredricksofi7] suggested thad; FIG. 13. (a) Probability distribution of straight segments of
provides an upper bound for the lateral chain deformationslength Ng, for flexible (upper curves and semiflexible (lower
We now examine changes in the conformation of indi-curveg chains. Solid lines correspond to simulations &t
vidual chains. In the initial state, the polymer chains exhibit=0.1ug/kg, r.=1.50,N=512 with 1 048 576 beads, and the dotted
an ideal random walk structure inherited from the melt. Thelines were obtained afT=0.3ug/kg, r.=2.20,N=512 with
average end-to-end vectOR?) thus scales with the number 262 144 beads. The straight lines show fits to exgg/NS"). (b)
of covalent bonds connecting two beadsN as <R2> z component of the bond-bond correlation function for the same
:lpIOAN- The component along each direction is 1/3 of thatsystems. Thin solid lines show exponential fits with the indicated
value since the initial state is isotropic. Figure()2shows decay lengths.
this initial scaling behavior fotAx?) (dashed lingand that
(Ax?) is not affected by crazingsolid line).

45° of thez (—z) axis. We then count the numbél, of
After an affine deformation by alongz, one would have

: ) : : 2 consecutive ugdown) steps. The probabilitf?(Ng,) of find-

an anisotropic RW with no change i or Ay, but(Az®)  ing g straight segment containitdy, steps is shown in Fig.
=\*1,loAN/3. Figure 11b) shows the actual behaviolid  13(a). For both flexible and semiflexible chains, the distribu-
lines) of (Az?) in the craze. At large scales, it exhibits the tion develops an exponential tail. Like this tail is indepen-

expected scaling for an affine deformatittashed lin€s  gent of N, T, andr.. The characteristic length scales that
However, the separation between beads is fixed by the length

; ; fl Rysfl__ ;
of the covalent bonds, so the deformation of individual poly-zrlfge:;zr:t vtvr?tehsteheta”rse d?ggjgtn ffélmatgg NR?;V aerl’Jr:]nen%Og? ure
mers alongz cannot be purely affine. At small scales, the 1g(b) shows that ve?r similar length scalesgarise ffomg an
linear scaling behavior dfAz?) crosses over into a quadratic Y g

behavior, which indicates that the polymer has been pulle quivalent analysis of the deca_ly of the correlation function
- . . or the z component of successive bonds.
taut on this scale. The typical number of beads in such a . .
In Sec. II B 1, we introduced the standard scaling argu-

Stra'ggt segmenNst can be calculated by lettingNelo)®  ment, Eq.(2), that relates the extension ratio and entangle-
=(AZ°)=N"1 loNs/3 at the crossover point, which yields ment length, which has been verified experimentally with
Ng=M?1,/3lo. Inserting the observed values ®f I, and  great success. In our cases, it predicfs,=6.5 andAS

lo, we arrive atNf=21+4 andNS'=12+2, respectively. =3.5, which agree with the observed values\ofHowever,
These values are comparable to the value$ofound in

the argument was motivated by the idea that segments be-
Fig. 11(a). On this scale, the deformation is nonaffine. tween entanglements become fully stretched and thus it ap-

The length of taut sections can also be determined byears to be at odds with the finding of an average straight
direct analysis of the chain geometry. To this end, we calcusegment length of onlyN¢/3 rather tharlN,. This discrep-
late the angle between every covalent bond andzthg&is  ancy is resolved by realizing that since the deformation is
and label a bond as pointing @gown) if the angle is within  uniaxial, only the projection ofl; onto thez axis, d;cos®,),

011801-8



GROWTH, MICROSTRUCTURE, AND FAILURE @.. .. PHYSICAL REVIEW E 68, 011801 (2003

TABLE I. Dissipation during craze growth and covalent contri- 1F@)
bution to the crazing stresSfor several different systems of size
262 144, 0.8
« 0.6
T re N 8Q/S8W  Cov. stresg%) S
N
Flexible 01 15 256  0.88 87 0.4
Flexible 01 15 512 0.88 88 0.2
Semiflexible 01 15 256 0.71 95 0
Semiflexible 01 15 512 0.67 97
Flexible 01 22 512 0.92 69 0 20 40 60 80 100 120 149
Semiflexible 01 22 512 0.71 75 L
Flexible 03 22 512 0.87 61
Semiflexible 03 22 512 0.78 67

Ozz 33/u0

is expanded, wher®, is the angle betweedk and thez axis.
The averageprojection is thus only /3 of the total length.

Indeed, it was already noted in an earlier wptk] that, due e
to this geometric factorx should be 3\ for fully 0 20 40 60 80 100 120 140
stretched chains. However, this result is less cited sice z/a

~Amax In many systems and, untll_our work, there was no FIG. 14. (a) Density profile through a craze simulation &t

reason to expect the length of straight S_egments thi 8. =0.1uy/kg andr .= 1.5a with flexible chains(b) vdW stresgsolid
The emergence of the length scilg/3 is a consequence jine) covalent strestdashed ling and total stres$ (thick line) as

of the random nature of the entanglement mesh. Clearly, ali function of position along. The kinetic contribution to the stress

strands would be expanded simultaneously by the same fags spiit evenly between the covalent and the vdW stress here and in
tor in a regular mesh as reported in a simulation study byraple I.

Stevend 27]. In contrast, in the polymer glass only the seg-

ments that are initially aligned with the stretching directionenergy. Since the craze drawing stress varies logarithmically
become fully stretched. These fully stretched segments angith velocity [see Fig. &)], these percentages could change
able to prevent further extension, because the entanglementsth velocity. However, we find thadU also decreases with

act similar to chemical crosslinks. Barsky and Robbins havejecreasing velocity, and there is no measurable change in the

confirmed the equivalence between entanglements angsercentage of work converted to heat over at least two orders
crosslinks by adding permanent crosslinks randomly to thef magnitude in velocity.

system[38]. The length between constraints then decreases Stress in the craze can also be partitioned into two com-
from N, and \,« decreases accordingly. They found ponents that originate either from van der Wa@l3) inter-
~\max IN all cases and that the average stretched leNgth actions, Eq.(6), or from covalent interactions, Eq7). The
remains at 1/3 of the distance between constraints. two contributions are very different in the uncrazed and the
The success of the scaling argument, &) and the con-  crazed material. In the undeformed polymer, the tensile
stancy of the extension ratio imply that there is no apprestress is mainly carried by the vdW bonds. As one moves
ciable loss of entanglements in our simulations during crazénhrough the active zone, most of the stress is transferred to
growth. Chains do not disentangle oride-2N,, and chain  the covalent bonds. Evidence for this is provided in Fig. 14,
scission(see also Sec. Vllis not observed during growth for which shows the covalent and LJ contributions to the total

any choice of parameters in our model. stress as a function of height in the widening direction. Fig-
ure 14a) displays the density profile in order to identify
E. Energy dissipation and stress transfer during crazing dense polymer region&igh density and craze regiondow

density. In Fig. 14b) one observes that in the dense region
all the tension is carried by the van der Waals bonds and the

l:nrteoagect%aezztl)?g\r?t/i:lse(r):e_r Jy)Jd:)/r. Jg'jisvgfggtgggsemeégn' covalent bonds are under slight compression. In the craze,
) om0 ) ;
The division between energy and heat is difficult to deter—60 95% of the total stressee Table )l is carried by the

. . . . : . covalent bonds, and the van der Waals bonds only contribute
mine experimentally, but simulations with short chains founda small fraction
that both contributions were substantjél. We have mea- '
suredSW and the energy change directly in our simulations . :
and calculatedsQ using the first law of thermodynamics: F. Problems with the capillary models
8Q=dU— 8W. dU can be calculated directly from the bead  The results presented so far reveal serious difficulties with
positions and interaction potentials. Table | shows the fracthe surface tension models discussed in the Introduction. The
tion 5Q/6W of dissipated total work for a number of large first evidence of this comes from the observation t8as
systems. In all cases, a large percentag80%, of the total independent of system size. In our smallest simulations of
work is dissipated, and only-20% is stored as potential lateral width 32, the simulation box only contains a few

The work done in transforming a volunt®/ of polymer
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3 ; TABLE II. Values of the shear yield stressg, the yield stress
( a) / for cavitation p.,,, and the local fibril stres§, as a function of
/ , temperature. Stresses are in unitsigfa®. Uncertainties are: 0.02
,’ /'/ / in 79, and about 10% in the other quantities.
(=] 2 7 ’,' /
ma ‘ ,// /," P d re=15 r.=2.2a
< \‘_/\,ﬂ’ - Tkg/ug 0.3 0.1 001 03 0.1 0.01
b1 ST TNT 7o 023 049 072 045 064  0.83
Pcav 1.2 2.7 3.0 3.0 4.8 5.0
So 2.9 45 5.2 5.9 8.0

It is perhaps surprising that the value of local stress
needed to draw fibrils is independent of the entanglement
length. In order to further test E¢L2), it would be desirable
to consider additional values df, and thusA. Unfortu-
nately, reliable values fax, exist for only a few values db.

It is, however, not necessary to knoM, for the present
purpose, since botB and\ can be measured directly from
the craze simulation. Moreover, the entanglement length
should only depend upon the chain statisfi@g], and glassy
states with arbitrary statistics can easily be created. We con-
firmed that simulations with the same persistence length in
the undeformed glass gave the same values ahd S inde-
: pendent of whether the bond-bending poterfiia. (8)] was
0 0.2 0.4 0.6 0.8 1 included. Figure 1&) compares stress-strain curves for
L,/L-1)/(A-1) =0uj, at four values of the initial persistence length. Increas-

) ) ing I, lowers\ and increaseS. However, Fig. 18) shows

FIG. 15. (@) Stress-strain curves for crazes with=1.68,  hat || curves can be collapseddt,, is scaled byx and the
228, 2.7a, and 3.3, in order of increasing height, al o iengion hbyx—1. This confirms thas, is the stress that
20-1‘%0”(8: fe=13%, andb=0uq. The corresponding \{alues 8 controls craze growth and only depends on the van der Waals
are given in Table IIl.(b) Rescaling of the same data in the form interactions. An experimental version of this test would be

o\ versus [,/L—1)/(A\—1). All curves collapse onto a com- . = . . -
mon plateatBy= S\ ~4.5u, /kg of the same length. difficult, since itis hard to changd, for real polymers with-
out changing the chemistry as well.

fibrils at T=0.1u/kg andr ;=2.2a. If Swere controlled by It is interesting to compare values & to the stresses
Eq. (4), one should expect that the simulation box wouldrequired for shear yielding and cavitation, which are also
need to contain a statistically significant number of fibrils ofindependent of chain statistics. Table Il compares these three
spacing(D,) for Sto reach its steady-state value. However,stresses for two ranges of the LJ potential. HereQu,, but
the value ofSdoes not fluctuate as the lateral dimensions aréhe bond-bending potential has almost no effect on the val-
increased to 64 or 128&. ues. The three stresses are clearly correlated, decreasing with
The second and more severe problem concerns the distiicreasing temperature and decreasigg The local fibril
bution of stress in the craze. The surface tension model asiress is always about twice the cavitation stress and ranges
sumes thaall the stress is carried at the interfaces of fibrilsfrom 7 to 12 timesro. The implication is that local stress for
or in viscous stress in the active zone. However, Table | andrawing material into fibrilsS, is related to the bulk yield
Fig. 14 show that almost all the stress in the fibrils is carriedstresses, but it is difficult to determine the relative role of
by the covalent bonds, while the surface tension is entirely
associated with broken vdW bonds and small entropic con- TABLE lil. Measured values ok, with uncertainties, as a func-
tributions. tion of |, and the corresponding range of valuesNof and I ,N,
In the following, we make an alternative proposition to inferred from Eg.(2). Runs were made al=0.1ug/kg, r¢
relate craze microstructure and drawing stress. This proposf 1.5, andb=0uj.
tion is based on the observation that the value§ ahd A

obtained from our simulations obey the equality lp A Ne IoNe
1.65 6.0:0.6 50-76 83-124
A= Ssihsi= So(T,r¢,0). 12
Sihn=Ssrhsn=So(T.rev) (12 2.2 4505 37-57 81-127
This can be verified for eacl andr. using Aq=6.0, A 2.7 3.5-0.3 29-41 78-111
=3.6, and values of S from Fig. 8. Since the fraction of area 3.3 3.0:0.3 25-37 83-122
occupied by the fibrils is 4/, S; is the local stress within the 5.55 2.0:0.2 19-28 105-155

fibrils.
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shear and cavity growth. It is interesting to note that the (a)
experimental values &/, for PS and PMMA are about 5 0.5
[15,40, and it would be useful to have values of this ratio for 04
other polymers. A comparison fo.,, would also be interest- a8
ing, but its value is sensitive to system size, strain rate, and = 0.3
inhomogeneities and it is difficult to measure experimentally. o 02
Given that previous results fd¥, [26,29,3( are consis- )
tent with values inferred from the extension rafkqg. (2)], 0.1 } W
our results fork as a function of , allow a rapid estimation / R s i s ek

of N.. Table Ill presents results for a wide rangel pfand -20 60 80
shows that the produd,l , is constant within our error bars.

Fetterset al. [39] have presented a model for the relation 15
between chain statistics amdl, that predicts ) 1
N3 Q 0.7
R ~ 05
N R , (13 g
5 0.3
where(R?)=1,I,N denotes the average end-to-end vector of 001§ )
the polymer chain and the proportionality constant only de- Y
pends upon density. This implieﬂ;eoclf, while our data is 20 0 20 40 60 30
clearly consistent with a simple inverse relatibrgoclgl. (z—29)/a
Equation(13) describes many experimental polymers, but it _ _ _ _
is difficult to Changelp without Chang|ng all the other pa- FIG. 16. (a.) Strain ratee as a function of distance from the

rameters in the equation. The flexible mod&l=0uy) is center of the_peak0 fpr fo_urvalues ofN, (see te_xl Positive values
known to be quantitatively inconsistent with EG.3) [26], of z—z, are in the d!rectlon of the crazed region. The !ength of the
which has been one motivation for studies of more rigiddashes increases with decreashg (b) Standard deviationr(Az)
models. It would be interesting to have additional values Of‘rom the average displacements alarig a given _Iayer over a time

I, from melt simulations to test whether the inverse relation'mervaI of 75n,. o(Az) decays exponentially into the craze and
p

.. the straight lines show fits to this decay with characteristic length
betweenN, andl, f_ound_ here holds more generally, and, if scaled — 483 35 27a. and 24
so, to understand its origin. ’ ’ ’ :

G. Width of the active zone and~20a at the base. The latter corresponds to the range of

. rapid density change in Fig. 10.
At the interface between dense polymer and craze, poly- The width of the region over which beads are mobilized

mer chains are Iocally.mol.:nhzeq and'broug'ht into the NeWyas determined from the relative diffusion as a function of
fibril structure. The region in which this motion takes place

is called the active zone. In Fig. 2, the height of the activehe'ght' Figure 1¢b) shows the standard deviation of dis-

zoneh was defined as the distance between the undeformddf@cements in the lengthening directiofidz). The curves
polymer layer and the void ceiling, and this layer was asP€ak at the same location as the curves in Figajl®ut are
sumed to behave like a strain-softened fluid. The main drof?°T€ asymmetric. In the direction of the dense polymer
in density should occur over the height of the void ceilingglass,oc(Az) ande fall to zero over a comparable range. In
~(Dg)/2[8]. In this section, we compare this simple picture contrast,g(Az) shows a long exponential tail into the craze
to our simulations. with a characteristic decay lengktthat varies with entangle-

Figure 10 shows typical results for the density profile nean, ot jength. The fit values df indicate that there is a defi-
the craze boundary. For both flexible and semiflexible poly-

mers, the density drops over a region of widtt2Ga. The nite trend to larger values &, increases, antl tends to be
’ . . : . . somewhat smaller thaN,. This result is not surprising, be-
average strain rate must be localized in the same region

. : . _ causeN, is the longest length scale over which particle mo-
sincee=—dlInp/ét. If the active zone advances at velocity bilization should occur. Standard deviations of the lateral dis-

v, thene= *vdIn ploz (the sign depends on whether the top pjacements\x andAy are smaller, but show essentially the

or bottom interface is growingIn Fig. 16a), we present  same decay lengths.

as a function of position along Averages were taken over  The above analysis indicates that while the mobility of the
layers of height &. The curves shown correspond to the four beads is constrained by entanglements, the regions of local-
different values ofl, used in the creation of the polymer ization of the strain rate and the density drop are related to
chains. As discussed above, this varies the entanglemetiie craze microstructuresee Sec. V)l . Typical values for
lengthN,. Curves were shifted by,, which correspondsto (D) and (Dg) are given in Table IV. From this{Dy)/2

the center of the peak. At this point, the density is roughly~10a which compares well to the width of the strain local-
halfway betweerp; and p;. Curves for very differenfN,  ization peak at half maximum. Experimentally, the width of
essentially overlap with a width of 10a at half maximum the active zone has been measured by a gold decoration tech-
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TABLE 1V. Structural parameters of model crazes. Size refers to the total number of beads in the
simulation. For the fibril spacing, results fob) from both the scattering analysis and the cluster analysis
(see text are shown. The rms variatiam(D)/a was obtained from cluster analysis.

(D)/a (D)a
T re Size Scattering Cluster o(D)/a (Dg)la
Semiflexible 0.3 1.5 178 6.1 5.1 9.4 18.4
Semiflexible 0.3 2.2 178 11.3 6.8 13.1 25.0
Flexible 0.1 1.5 6% 128 4.7 4.2 41 14.3
Semiflexible 0.1 1.5 64 128 4.8 4.0 55 12.8
Flexible 0.1 2.2 6% 128 8.4 55 7.0 22.3
Semiflexible 0.1 2.2 64 128 8.2 53 9.5 19.8
Flexible 0.3 2.2 62 12.6 7.9 8.7 30.7
Semiflexible 0.3 2.2 64 11.1 6.5 10.4 23.5
nique [8]. It was concluded that it lies betwed®) and 1 e
(Dy), which agrees with our results. S % CRARU (14)
VI. MICROSTRUCTURE OF CRAZES times the form factor for the monomers. Since the craze

Another fascinating aspect of crazes is their complex mi_structure_has azimuthal symmetry, one decompqses the wave
crostructure. Figures 4—6 give an impression of the range of€ctor K into components parallel and perpendicular to the
length scales appearing in the voided fibril network. ClearlyfiPrils. Contour plots ofS(k, ,k;) for two crazes are shown
the picture of cylindrical fibers and void fingeffSig. 2 isan " Fig. 17. The microstructure was varied by changing the
oversimplification. It is nevertheless helpful to build more
realistic models starting from this simple scenario. - (a)

A. Structure factor ey

et
Experimentally, the standard measurement of the craze ‘\_j' 103
microstructure is done via scattering experiments. The scat-cjj’
tering intensity in these measurements is proportional to the 102
structure factor

10!
0102 051 2
< k.a
v
10*
Vamm
. 3
410
771
10°
<
A 101
0102 05 1 2
k.a
FIG. 18. Integrated structure factor of crazéa) at T
FIG. 17. Contour plots of the structure factor of crazes Wé@h  =0.1uy/kg, flexible chains withr .=1.5a (solid) and semiflexible

flexible chainsy .= 1.5a and(b) semiflexible chains;.=2.2a. The with r .= 2.2a (dashegland(b) at T=0.3u,/kg, flexible (solid) and
temperature wa$ = 0.1uy/kg and the systems contained 1 048 576 semiflexible(dashedl chains withr.=2.2a. The straight lines have
beads. Colors range from blagkigh intensity to white (low inten-  slope —3. System sizes were 1048576 beadsanand 262 144
sity). beads in(b).
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cutoff lengthr . and chain flexibility. Both patterns are asym- -~ =
metric with the intensity decaying much faster in the direc- e 9 AR L4 ‘. .
tion parallel to the fibrils than perpendicular to them. ¢ ‘ e g *

Most experimental setups integrate okemusing slit col- 8
limation and measure the integrated strLTcture fasdr, ) -f . "“ o 4 s
=J7..dkS(k). In Fig. 18a), we plotS(k, ) as a function of * “' “ -* % '.{
the magnitude ok, for the same systems shown in Fig. 17. s o
At large wave vectors, the curves rise to a peak-&r/a . ® ) w & u.‘

)

(not shown, which corresponds to the typical separation of .
two beads. This length scale is so short that it is usually not

' )
o
resolved in typical experimental scattering plots shown in, ’ T :
e.g., Ref[20]. The characteristic feature 8k, ) is found at . PY e
smallerk, in the form of a power-law regime with exponent 9 i > o. ®
[
’ . d

— 3. The extent of this scaling regime is bound at large wave .

L ]
vectors by the small scale cutoff provided by the interparticle & o
i i L) e ®
spacing and at small wave vectors by the distance to the next ® s
fibril. The power-law regime is more pronounced for the 9 ° .oo‘ b
crazes shown in Fig. 1B), which were created at higher i hd
temperatures wher@,) is larger.

FIG. 19. Typical cross section through a craze from flexible
_ _ chains,r,=1.5a, T=0.1luy/kg. The lateral dimension is 128
B. Interpretation of scattering data Fibrils appears as clusters of varying size, and the distributions in
The traditional interpretation of craze scattering data beFig. 20 are calculated form these cross sectices text

gins with idealizing a craze fibril as a straight cylinder of . ) N i o
diameterD and lengthl alongz The scattering intensity is described by a radial distribution functiag(r). This will

then proportional to the squared magnitude of the form factolead to interference effects in the scattering intensity that can

for such a cylindef20], be described by an interference function(k,)
=1(k )/ly(k,)—1. The interference function is related to
ApemD?1Y2 3, (DK, g(r) by [20]
F(k)=—— T (15
) -1 7T<D>2)\F2k'k32 k,)dk
where A p,, denotes the electron density adgis the first- g(r)=1+ 4 0 T 1 (ki) Jo(27rk, )dk, -

order Bessel function. Due to the asymptotic behavior of (18
J1(X) = (2/7x)Y’cogx—3m/4]+ O(x 1) for large argu-
ments, the scattering intensity of a single cylinder will ex-As a result, the power-law tail will be modified at small wave
hibit an oscillating power-law behavidi (k, )|?=k; 2. This  vectors. In particular, the first peak g{r), corresponding to
is also called Porod scattering. a typical fibril separatiodD), should translate into a maxi-
In general, the fibrils do not have a single diameter, butmum inl(k,).
rather a diameter distributioR(D). One can introduce an  The Porod scattering laj# (k, )|?=k; ® is well confirmed
average scattering intensity at higher temperatures in Fig. @8, while the power-law
regime is shorter at lower temperatures. Visual inspection of
Drmax the craze images suggests that the straight cylinder approxi-
IO(ki):<F(ki)2>:fD CdDPDIFKD% (18 mation is not so well justified in this case. Fibrils branch
m more often and intersect theaxis at varying angles. At the
by averaging the form factor over the diameter distributionhigher temperature, the chains are more mobile and can align
and neglecting the correlations between fibrils. The main efmore easily, but they are still not ideal cylinders. We note
fect is to smooth out the oscillations so that a straight powerfurthermore that the curves shown in the log-log plot of Fig.
law tail results. The average diamet{&)=DP(D)dD can 18 do not exhibit a clear maximurfa maximum would be
be obtained via a Porod analysis, in which one determinegiore easily identifiable in a linear plot like those normally
the prefactore to the power-law taiI,S(kL)=akI3. This  used for experimental resultsThis suggests that the order-

can be related t¢D) [18,19 through ing of fibrils is mostly random without a clear characteristic
separation. However, our statistics are limited by the system
Q size at these large length scales.
D)= ——"7—, 17
(B (11— 1\

C. Distributions of fibril diameter and spacing from

whereQ= [dk, 27k, S(k,) is a scattering invariant. Values real-space analysis

for (D) obtained from this formula are collected in Table IV.  In a previous analysis of scattering d@i®] for polysty-
The craze fibrils do not all have the same distance fronrene and polycarbonate crazes, Ed$)—(18) were used to
each other, but have, in general, varying distances that can lextract the diameter distributidd(D) andg(r) by means of
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o o ) FIG. 21. Radial distribution functiog(r) from analysis of con-
FIG. 20. Distribution of fibril diameters from analysis of con- acted clusterésee text The systems shown afe) T=0.1ug/kg
nected clustergsee text for the same crazes as in Figs.(d8and ‘with r,=1.5a, flexible (¢) andr,=2.2a, semiflexible &); (b)

18(b). Solid lines refer to flexible chains and dashed lines to SeMiT—0.3u,/kg, r.=1.52 (#) andr.=2.2a () (both semiflexible
flexible chains.

, o , An estimate for the mean fibril spaciq@®,) can be ob-
a detailed fitting procedure. The craze images shown abovgineq by equating the area per fibl’ﬂDS/4, to the inverse

suggest thaP(D) is rather broad, and wide distributions for areal densit : _ .
) . S . y 1, i.e.,(Dg)=2y1/n7. The areal density was
P(D) W.er?) foudng Ior bolth mgten;l;, with a significant in- obtained by counting the number of separate fibrils per cross
crease in breadth for polycarbongfg). . section. Values fo(D,) are also given in Table IV and trans-
Here, we access these distributions by a direct geometr|—ate into a range between 10 nm and 25 nm. The higher

cal grllaly5|§ .Of the bead p05|t|on§d Tg)tr]thlsder!d, r\;voe b|r|1 th%umbers are comparable to experiment and are obtained with
Farttkl]c € pgsm_onsdc_)ntotg squac;etgﬁl IWIt glrl Slze rrtr_1a ¥C:2.2a, which produces more realistic surface energies.
0 the widening direction and faxe fatéral Cross Sections ot , 5 qer o obtain the radial distribution function of the

heightdl_.&. A? iIIulstrated in I:jig.l 19, a ﬁbr:" nO\{dv*gppeErs 85 fiprils, we continued the analysis described above and calcu-
a two-dimensional connected cluster, whose #eataken  |5i04 the center of mass for each 2D cluster. The positions
to be the sum of the areas of the occupied squares. We def"&?\/en by this procedure were used to calculgée) in Fig
D=vaA/a. 21. In general, these functions have very little structure.
There is a size exclusion minimum at the origin, and the

curves have a weak first maximum aroundl18s the fibrils

Figure 20 shows the resulting distributions Df As ex-
pected P(D) is very broad. The distributions for flexible and

semiflexible cham; are very similar at gmmlfor a f|>§ed become thicker, the location of the maximum shifts to larger
temperature, but differ for largdd. The tail of the distribu- 5165 Qualitatively, similar curves were obtained from ex-
tions could be fitted to an exponential function, but our sta-, erimen{20], which confirms the basically random nature of
tistics are too small for a conclusive statement. Mean valuegy positions. The height of the maximum is too small to be
of the diameter are given in Table IV, together with the stan.fiacted in the scattering intensity.
dard deviations of the distributions. The large values of the
latter suggest tha{D) has to be used with care when de-
scribing the craze microstructure. Previously, Baljon and
Robbins reported similar values @)= 7a, (D)= 11a for In regime Il of the stress-strain curve of Fig. 7, the entire
flexible chains aff =0.3uy/kg andr.=1.5a [10]. volume of the simulation cell has been converted to a craze.
The value of(D) obtained from the Porod analysis is Elongation past the extension ratio causes uniform straining
always larger than the value obtained from the clugteal-  of the craze and eventually leads to craze failure. Studies of
spac¢ analysis. Both values rise with increasing adhesivethis regime are directly relevant to crack propagation in
interaction and increasing temperature as expected. Takinglassy polymergFig. 1). The stress in the craze region rises
a~0.8 nm, diameters in our model crazes would corresponffom S at the active zone to a maximum val&g,,, at the
to a range of D) =1.4-6.3 nm, which is at the small end of crack tip. The elastic properties of the craze determine the
the experimental range. The reason is that an artificiallyate at which the stress rises with distance, &pg deter-
small value of the surface tension and a high widening vemines how large the craze region can become before the
locity v are used here. Both lowé€D), which allows us to  crack propagate$5]. These properties were recently ob-
use smaller system sizes. tained from MD simulations and combined with continuum

VIlI. STRESS DISTRIBUTION AND CRAZE BREAKDOWN
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FIG. 22. Saturation of fibril breaking stresses in systems of size N
262 144 beads af=0.1uy/kg . S, denotes the maximum satura- 14
tion stress in the limit of very long chains. The solid line is 1 12
—exp(—N/4N.+1/2) (see text Squares indicate flexible chains 10
(Ne=64) and triangles indicate semiflexible chaimMé.&32). g
S 6
theory to predict the macroscopic fracture endi§ly Here, 4
we focus on the microscopic stress distribution and its rela- 5
tion to Spax-

0 50 100 150 200 250

A. Disentanglement versus chain scission N

The craze can fail by two different mechanisms that de- FIG. 23. Distribution of tension along th@) flexible and(b)
pend on the Cha|n |engtN short Cha|ns can dlsentangle, semiflexible Chainsl‘ﬂ:512). The lowest curves Corl’espond to the
while very long chains fail through chain scissifi. Both unstressed craze and the highest curves show the tension at the
limiting behaviors and the crossover between them can preaking point. Two intermediate stages are also shown. The ten-
addressed through our simulations. As can be seen in Fig gion has a constant valufg in the center and relaxes towards the
short chains of lengtiN=128 form é:razes that grow at the. end with a characteristic length scélg,that increases with strain.
constant plateau streSs but the stress drops monotonically Values for Neng were obtained by f'tt'n.g the part of the curves

o . shown as thick lines to an exponential relaxation of the form
to zero upon straining past. For longer chains, the stress _
" n f/fLJ—fc_ao exp(—N/Nend).
05, ises to a maximum valu§,,,, that exceeds.

Values forS,,,, were systematically obtained as a function
of normalized chain length/N, from curves such as those chain, but a relaxation toward the free ends. The character-
shown in Fig. 7. Figure 22 summarizes the breaking stressastic length scales for this relaxation were extracted by fitting
for the craze fibrils normalized by the breaking stress in thean exponential decay to the transition region. The values of
limit of very long chainsS, . Syayis zero forN<2Ne, since  the decay lengthsll,, =21 andNSh =13 are comparable to
stable crazes do not form for such short chaifig,/S. first  the characteristic length df./3 for stretched segments, but
rises roughly linearly wittN/N,, and then saturates at unity are not universal. Stronger adhesive interactions were found
for chain lengths longer than aboutNQ. The saturation tgincreasdN® Upon straining the craze, the tension in the

L . . L end *
coincides with the observation of significant amounts of.anter of the chains and the vaIueeNiﬁé' rise. At the break-

chain scission. Interestingly, the data seems to collapse onmg| point (last curvey the end relaxation extends over a

a single curvesolid line). _ . length scale comparable to the entanglement length.

Note that the maxima of the stress-strain curves in Fig. 7 Thege results help in formulating a simple argument for
are reached at strains 6f6 and~ 10 for flexible and semi- o yniversal curve plotted in Fig. 22. The average distance
flexible chains, respectively. These values are close tQs gn entanglement point from the chain endN&t. We
3\ max, Which implies that at the breaking point the chains assume that the probability of disentanglement decreases ex-
are pulled fully taut between entanglement points. This wag,onentially with distance from the chain end, as suggested
confirmed by a direct analysis of the craze microstructure. py the tension relaxation curves. The characteristic length
scaleNg,q at the breaking point in these curves was of the
order of N,. Because of the above, we expect this length

In order to understand the crossover regime and the conscale to be the characteristic decay length for the probability
petition between the two failure mechanisms, it is useful toof disentanglement, and thus postulate a disentanglement
study the distribution of tension along a given chain. Figureprobability of the form exp—(N—2Ne)/4N.]. Here,N was
23 shows the tension as a function of distance from the chaireduced by R, since for this chain length the disentangle-
end at several stages of craze breaking. Since the chain engient probability is one and the chain is free on either side.
are identical, symmetry was used to improve statistics. In th&he maximum stress can now be written as the limiting
unstrained crazéowest curvey both flexible and semiflex- value of S, times the probability for nondisentanglement,
ible systems exhibit a constant stress in the center of thehich gives

Chain end relaxation
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10Y @) =100f ; as described in Sec. Ill. The onset of scission can
_1 be estimated using a simple scaling argument:
10 NponaPor({f))~1. From this we estimate an average value
= 1072 of the tension at breaking,
Sl
E/ 107 (f)=fc/InNpongs: (20
107

For Npong=262 144, this implies that scission will occur

1073 010 20 30 40 50 60 when(f)=8.0f ;, which was confirmed by a direct inspec-
f/fLy

tion of the chains at the corresponding strains. Such high
tensions only occur when the craze is strained past the ex-
tension ratio. The largest value ¢f) observed with the
present model during craze growth wasf4;5and occurred
at very low temperatur@=0.01uy/kg andr.=2.2a.

The degree of chain scission in experimental crazes is still
a matter of debate, but it appears likely that at least some
chains do experience scission. The absence of scission in the
present study is most likely due to the low monomeric fric-

10-5 tion coefficient of the bead-spring model. As the above argu-
0 10 20 30 40 50 60 ment showed, a relatively modest increase in the average
f/fLy tension will quickly lead to appreciable scission. More real-

istic polymer models should be able to capture this effect. An
FIG. 24. Distribution of tension in crazes of size 262 144 beadsncrease in system size will likewise raise the number of
with N=512 for (a) flexible and (b) semiflexible chains. Strain broken bonds. For a typical value ()f>:3fLJ one bond
states correspond to the ones shown'in Fig. 23. The vaal_ue(é)for would break for every 1% bonds. Note that the exponential
are 2.9, 4.9, 7.6, and 11§, respectivelyf,,=2.4uo/a” is the  yangion distribution leads to a logarithmic size dependence,
breaking force of the LJ interaction. The straight lines correspond tcEq (20), and allows for sequential bond breaking. The fibrils
expl T JH). are thus much weaker than implied by the common simple

assumption that all bonds carry the same tension and break
Smax Se.=1—exgd — (N—2Ne)/4N.]. (19 when(f)=f..

Figure 22 shows that this curve agrees well with the data.
VIIl. SUMMARY AND CONCLUSIONS

B. Global tension distribution . . . .
This paper presented molecular dynamics simulations of

The parameter governing chain scission and thus theraze nucleation, widening, and breakdown. Initial failure of
value of S, is the distribution of tension in the polymer the LJ polymer glass occurred through shear in biaxial load-
craze. In a previous papetl], we reported that this distri- ing. Only when all three principal stresses were tensile did
bution is characterized by an exponential tail at large tensileavitation and craze formation occur. However, once past the
forces, in analogy to jammed systems such as granular maucleation phase, plane stress conditions are sufficient for
terials[41]. This distribution is shown in Fig. 24 for flexible continuing craze growth. Cavitational failure could be fitted
and semiflexible chains of length=512 and several strain to a cavitation criterion of the form$,, = 75+ a°p.
states. The tensiléositive part of the distribution is well Craze widening proceeds in the simulations by a clearly
fitted by 1{f)exd —f/(f)], where only the positive tensions identifiable fibril-drawing process. This interpretation is also
are included in the averagé). Note that(f) is the same for  well supported by experiments. The resulting craze micro-
flexible and semiflexible chains at the plateau. The distribustructure is compellingly similar to TEM images of experi-
tion with the steepest slogemallest(f)) corresponds to the mental crazes, and the length scales quantifiedy and
fully developed craze. Additional curves with highép cor- (D) are within experimental limits. The simulations clearly
respond to stressed crazes at the same strain with respectdetablish the connection between extension ratio and en-
the unstrained craze. Note that the semiflexible and flexiblganglement length. In the glass, disentanglement is prevented
crazes have the same values(6j at each strain. This is and the entanglements act like chemical crosslinks. A micro-
related to the fact that the streSg in the fibrils is indepen-  scopic analysis of the length of stretched chain segments has
dent of N, (see Sec. V F The last curve shows the tension shown that, unlike the case of a regular mesh, only a few
distribution at the breaking point wheke,, is largest(see  segments are fully expanded to the entanglement length, and
also Fig. 7. The effect of straining the craze only changesthe average extension is onN./3. The factor 1/3 arises
(f), and all curves collapse when normalized(lfy. from averaging over all angles that a given segment can form

We note that in our simulations, no scission or disen-with the stretching direction.
tanglement occurs during craze growth proper. The fraction Another salient finding of this study is the exponential
of bonds that break at a given average tensioRjg(f)) distribution of tension in the craze. The presence of large
= [ exd —fKf)ldf(f)=ex —fc/(f)]. In our simulationsf,  stress fluctuations makes chain scission much more likely
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than, e.g., a Gaussian distribution or uniform loading. SincencreasingT and with increasing strength of the van der
force distributions of this kind are also often seen in convenWaals interactions. Chain stiffness has less effect, although
tional jammed systems such as foams, colloids, and granuldD) is larger for flexible chains than for semiflexible chains
media, we have suggestgtll] that a craze can be viewed as at high temperatures.

a system that jams under tension. The distribution of fibril diameters was determined from

The highly nonequilibrium nature of the force distribu- the real-space structure of the crazes. The average fibril di-
tion, and the strong concentration of stress in the covalerdameter from this method was always smaller than that deter-
backbone bonds, formed the basis for our critique of themined from the structure factor. The distribution was also
conventional capillary model of craze widening. The poly-very wide with a variance that exceeded the mean and a tail
mer glass is not a viscous fluid in the active zone and thextending to many times the mean. The radial distribution
hydrodynamic description does not apply. The picture sugfunction for the fibrils shows almost no correlation, merely
gested by our simulations is that crazing is a form of local-an exclusion minimum near the origin. Fibrils merge and
ized shear deformation, but with a much greater mobilizatiorsplit with each other directly, rather than being joined by
of material than in the standard shear yielding. The verysmaller cross-tie fibrils.
similar rate and temperature dependenceS isfanother in- The simulations described here capture the generic fea-
dication of the close relation between the processes. Basedres of experiments on many different polymers and provide
on trends observed in the simulations, we have suggestgateviously inaccessible information about the dynamics and
that the local stress in the fibril§,= S\ is independent of microstructure. However, they are unable to address quanti-
the entanglement lengtl®, varies with temperature and the tative behavior of specific polymers. Future studies with
strength of adhesive interaction in a manner very similar tachemically realistic potentials will be of great value, but re-
the yield stresses for shear and cavitation. Establishing a pretuire orders of magnitude more computational effort.
cise connection between these characteristic stresses should
be a most interesting direction for future work.

A detailed analysis of the microstructure of crazes was
also presented. The calculated structure factor is similar to We are indebted to E. J. Kramer and H. R. Brown for very
measured scattering intensities. As in these experiments, iasightful discussions of this work. Financial support from
Porod analysis was used to extract a measure of the meane Semiconductor Research Corporation and NSF Grant No.
fibril diameter(D) from the structure factor. While the ex- DMR0083286 is gratefully acknowledged. The simulations
tension ratio depends only dd,, the mean fibril diameter were performed with LAMMPS 200[42], a molecular dy-
depends on many factors. The value(8) increases with namics package developed by Sandia National Laboratories.
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