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Growth, microstructure, and failure of crazes in glassy polymers
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We report on an extensive study of craze formation in glassy polymers. Molecular dynamics simulations of
a coarse-grained bead-spring model were employed to investigate the molecular level processes during craze
nucleation, widening, and breakdown for a wide range of temperature, polymer chain lengthN, entanglement
length Ne , and strength of adhesive interactions between polymer chains. Craze widening proceeds via a
fibril-drawing process at constant drawing stress. The extension ratio is determined by the entanglement length,
and the characteristic length of stretched chain segments in the polymer craze isNe/3. In the craze, tension is
mostly carried by the covalent backbone bonds, and the force distribution develops an exponential tail at large
tensile forces. The failure mode of crazes changes from disentanglement to scission forN/Ne;10, and
breakdown through scission is governed by large stress fluctuations. The simulations also reveal inconsisten-
cies with previous theoretical models of craze widening, which were based on continuum level hydrodynamics.
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I. INTRODUCTION

The failure of glassy polymers such as polystyrene~PS!
or polymethylmethacrylate~PMMA! under external stresse
occurs either through shear deformation or through craz
@1,2#. While shear yielding occurs essentially at constant v
ume, crazing has a strong dilational component, and the
ume of the material increases to several times its orig
value before catastrophic fracture occurs. Crazing is a fai
mechanism unique to entangled polymeric materials and
ally precedes a crack tip~see Fig. 1!. The fundamental and
technological importance of crazes is that they are in p
responsible for the large fracture energyGc of polymer
glasses@3–6#, which makes them useful load-bearing ma
rials. They control the crack tip advance and require a la
amount of energy dissipation up to the point of catastrop
failure. Crazes can reach several micrometers in width
consist of an intriguing network of fibrils and voids, whic
spans the entire deformed region.

Despite the frequent appearance of crazes, there is
comparatively little theoretical understanding about the c
ditions and mechanisms of craze nucleation, growth, and
timate breakdown@1–4,7,8#. In this paper, we present a
extensive set of nonequilibrium molecular dynamics~MD!
simulations that address these various phenomena. In
approach, polymers are modeled on a coarse-grained s
that takes into account van der Waals~vdW! and covalent
interactions without specific reference to chemical det
The effect of chain length, temperatureT, widening velocity
v, and vdW interaction strength on the craze structure ca
studied over a wide range of parameters. The molec
simulations provide insight into microscopic processes t
are not accessible to experiments and offer an opportunit
test and develop theoretical models of crazing.

A fundamental limitation on molecular level treatments
of course the finite system size. The largest volumes ac
sible at present are;100 nm3, while the craze spans man
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micrometers. We are thus limited to a study of craze wid
ing in a small representative region and cannot include, e
the entire crack tip. Craze tip advance processes@8# are be-
yond the scope of the present work.

Several aspects of craze physics have already been
dressed with simulations in previous papers. Baljon and R
bins @9,10# demonstrated the importance of chain length
the onset of craze growth. Rottleret al. studied the elastic
properties and the fracture stresses of fully evolved cra
and used them in combination with linear fracture mechan
to calculate the macroscopic fracture energy of glassy p
mers that fail by crazing@6#. Rottler and Robbins also inves
tigated how polymer entanglements affect the craze struc
on a microscopic level and argued that they ‘‘jam’’ the e
pansion of the glass under tension@11#.

This paper extends the previous work and is organized
follows. In Sec. II, we summarize the key experimental o
servations and review the existing theoretical models of cr
ing. Section III gives the technical details of the molecu

FIG. 1. Craze fracture of glassy polymers. The craze is a
formed region~shaded! that grows in width and length under a
applied vertical stressS. Its density is reduced with respect to th
undeformed polymer by a constant extension ratiol. Characteristic
values for widthd and lengthl are indicated. During growth,Sacts
perpendicular to the sharp interface between undeformed poly
and craze. Also shown is an advancing crack tip from the left t
breaks the craze. Small representative volumes of each region
studied with molecular simulations.
©2003 The American Physical Society01-1
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models used in this study. We then analyze the results
craze nucleation~Sec. IV!, growth ~Sec. V!, microstructure
~Sec. VI!, and failure~Sec. VII!, and compare our findings t
previous models and experiments. Final conclusions are
fered in Sec. VIII.

II. CRAZE PHENOMENOLOGY AND THEORY

A. Experiments

Crazes have been studied experimentally for more than
years @8,12–15#. The techniques most commonly used
analyze the craze structure are transmission electron mic
copy ~TEM! @16,17#, low angle electron diffraction, and
small angle x-ray scattering@18–20#. Comprehensive re
views of theoretical and experimental results have been
sented by Kramer and Berger@8,15# and Cretonet al. @21#.

The density of the undeformed polymer,r i , and craze,
r f , is obtained from TEM measurements. The increase
volume during craze formation, or extension ratiol
[r i /r f , is found to have a characteristic value for a giv
polymer that is independent of molecular weight. Typic
values ofl for different polymers range from two to seve

Real space images of the craze show that the polymers
bundled into fibrils that merge and split to form an intrica
network. The fibrils are highly aligned with the applied te
sile stress and vary in diameter and length. However,
complex structure is normally idealized as a set of unifo
vertical cylinders connected by short cross-tie fibrils@8#. The
characteristic fibril diameter̂D& and separation̂D0& ~see
Fig. 2! are then determined from a Porod analysis of scat
ing experiments~see Sec. V!. Measured values range be
tween 3–30 nm for ^D& and 20–50 nm for ^D0&
@8,15,22,23#. For example, for polystyrene one obtains^D&
;6 nm and^D0&;20 nm @1#.

Nucleation of crazes@13# occurs preferentially near de
fects in the polymer. These produce large local ten
stresses that lead to the formation of microvoids that evo
into a craze. Once nucleated, the craze grows in length
width ~see Fig. 1!. It is well established@8# that the craze
widens by drawing material from the dense polymer in
new fibrils. This deformation is confined to a narrow acti

FIG. 2. Surface tension model of craze widening. Void fing
with characteristic spacinĝD0& propagate into a strain-softene
layer of polymer fluid of widthh, leaving behind fibrils of a char-
acteristic diameter̂D&. The externally applied stressSacts perpen-
dicular to the fluid-glass interface. The characteristic radius of
finger caps is of the order of^D0&/2. ~See Refs.@8,15# for an analo-
gous figure.!
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zone at the interface between the dense polymer and
craze. The width of the active zoneh ~see also Fig. 2! is
usually between̂D& and^D0&. Craze widening is a steady
state process, in which a constant ‘‘drawing stress’’Sranging
between 20 and 100 MPa is applied. Typical experimen
values are 35 MPa~polystyrene! @15# and 70 MPa~polym-
ethylmethacrylate! @24#. The value ofS is of the same order
as the shear yield stress of the polymer, and is found
increase with the entanglement density.

B. Theory

A theory of crazing has to explain the molecular origin
the craze structure and the interdependencies of the var
quantities measured in experiments. Despite a wealth of
perimental data on crazing, there is currently no theoret
description that addresses all aspects of craze physics.
following models have been proposed to explain the ext
sion ratiol and the relationship between fibril spacing^D0&
and drawing stressS.

1. The extension ratiol

The extension ratiol has been successfully explained b
a simple scaling argument that relatesl to the microscopic
entanglement network in the polymer glass. Entangleme
arise in dense polymeric systems from the topological c
straints that the chains impose upon each other. The mob
of the chains is greatly restricted because they cannot
through each other. The starting point for the present ar
ment is the assumption that the glass inherits these entan
ments from the melt, where an entanglement molecu
weight is given by the plateau modulus under shearGN

(0) :

Me5r4RT/5GN
(0) . ~1!

This result can be derived from the microscopic tube mo
@25#, which relates the rheological response of the polym
melt to the deformation of a tube to which the polymer cha
is confined. With repeat units of weightM0, one can define a
typical number of stepsNe5Me /M0 ~entanglement length!
between entanglements along the polymer backbone.

These entanglements are assumed to act like perma
chemical crosslinks during crazing, which implies that t
expansion ends when segments of lengthNe are fully
stretched. The initial separation of entanglement points
di5( l pl 0Ne)

1/2, according to standard random walk~RW!
scaling, wherel 0 is an elementary step length andl p the
persistence length. The length of this segment rises fromdi
to a maximum final lengthdf5lmaxdi5Nel0, and thus

lmax5~Nel 0 / l p!1/2. ~2!

Experimentally, Eq.~2! is well confirmed, but Sec. V D
shows that the picture motivating this expression is overs
plified.

2. The drawing stress S

The value of the drawing stressS has traditionally been
related to the craze microstructure (^D&, ^D0&) via capillary
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GROWTH, MICROSTRUCTURE, AND FAILURE OF . . . PHYSICAL REVIEW E 68, 011801 ~2003!
models @8,15#. In these models, the polymer in the acti
zone is treated as a viscous fluid with a surface tensionG and
a viscosityh. Figure 2 shows an idealized picture of th
craze geometry, where craze formation is modeled as
propagation of void fingers with a characteristic spac
^D0& into the strain-softened fluid. The applied stressS re-
quired to advance the interface has a dissipative contribu
arising from a suitable flow law~e.g., power-law fluid! and
an energetic contribution due to the surface tension. The
sion is S in the polymer glass and the Laplace press
2G/(^D0&/2) at the ceiling of the finger, wherêD0&/2 is the
characteristic radius of curvature~see Fig. 2!. By estimating
the width of the active zone ash;^D0&/2, Kramer calcu-
lated a stress gradient between the glassy polymer and
finger void ceiling@15#,

“s;
Ds

h
;

S24G/^D0&

^D0&/2
. ~3!

Since“s is proportional to the interface velocity, he the
predicted that the system will select a value of

^D0&;8G/S, ~4!

which maximizes the stress gradient between the finger c
ing and the bulk polymer and, thus, will lead to the fast
propagation velocity of the fingers.

More recently, Krupenkin and Fredrickson@7# have for-
mulated a theory of craze widening that is similar in spirit
Kramer’s arguments and also equates the craze wide
stress with a viscous and a surface tension contribut
However, these authors suggest a different interpretatio
G. They introduce an effective surface tension that begin
rise above the vdW value when the finger radius rises ab
the rms spacing between entanglement lengthsdi . This an-
satz is motivated by the idea that expanding the random w
between entanglements generates an additional energy
alty. An upper bound toG is provided by the energy require
for chain breaking, which sets in once the finger radius
ceeds the maximum elongation between entanglem
points, l 0Ne . By minimizing the finger propagation stres
they conclude that the fibril spacing will always be

D0;di , ~5!

independent of surface tension. In their model, the fib
spacing is determined exclusively by the entanglement
work.

III. SIMULATIONS AND MOLECULAR MODELS

We study craze formation by performing molecular d
namics simulations of a standard coarse-grained poly
model @26#, where each linear polymer containsN spherical
beads of massm. Models of this kind have a long tradition i
polymer research and have verified theories of polymer
namics@25# in the melt. They have recently been employ
by other researchers to study failure in network polymer
hesives@27# and end-grafted polymer chains between s
faces@28#.
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In this bead-spring model, van der Waals interactions
tween beads separated by a distancer are modeled with a
truncated Lennard-Jones potential

VLJ~r !54u0@~a/r !122~a/r !62~a/r c!
121~a/r c!

6# ~6!

for r<r c , whereu0;20–40 meV anda;0.8–1.5 nm are
characteristic energy and length scales@29#, respectively. A
simple analytic potential@28#

Vbr~r !52k1~r 2R0!3~r 2R1! ~7!

is used for covalent bonds between adjacent beads along
chain. The form of this potential was chosen to allow f
covalent bond breaking, which is not possible with oth
standard bond potentials such as the popular finitely ex
sible nonlinear elastic~FENE! potential@26#. Bonds are per-
manently broken whenr exceedsR051.5a. The constant
R150.7575a was chosen to set the equilibrium bond leng
l 050.96a, which is the ‘‘canonical’’ value for the bead
spring model with the FENE potential@26#. This allows us to
use results from previous studies, most importantly the
tanglement length. The constantk1 determines the ratio o
the forces at which covalent and van der Waals bonds br
We find that this ratio is the only important parameter in t
covalent potential and set it to 100 based on data for
polymers@27,28#, which impliesk152351u0 /a4. Tests with
other analytical forms of the bond potential showed no
preciable impact on our results as long as the bonds b
before the chains can pass through each other.

In order to vary the entanglement length, we include
bond-bending potential@28,30#

VB5b (
i 52

N21 S 12
~rW i 212rW i !•~rW i2rW i 11!

u~rW i 212rW i !uu~rW i2rW i 11!u
D ~8!

that stiffens the chain locally and increases the radius
gyration. Here,rW i denotes the position of thei th bead along
the chain andb characterizes the stiffness. We will consid
two cases, referred to as flexible~fl! (b50) and semiflexible
~sfl! (b51.5u0) polymers. The corresponding entangleme
lengths are Ne

fl'70 and Ne
sfl'30 beads, respectively

@26,29,30#.
We consider three temperaturesT50.01u0 /kB , T

50.1u0 /kB , and T50.3u0 /kB , where the last temperatur
is close to the glass transition temperature. The amoun
adhesive interaction between beads is varied by changing
ranger c of the LJ potential from 1.5a to 2.2a.

The equations of motion are solved using the veloc
Verlet algorithm with a time step ofdt50.0075tLJ , where
tLJ5Ama2/u0 is the characteristic time given by the LJ e
ergy and length scales. Periodic boundary conditions are
ployed in all directions to eliminate edge effects. The te
perature is controlled with a Nose´-Hoover thermostat
~thermostat rate 1tLJ

21) that is only employed perpendicula
to the direction of craze growth. Simulations with a Lang
vin thermostat showed no appreciable difference between
two methods.
1-3
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J. ROTTLER AND M. O. ROBBINS PHYSICAL REVIEW E68, 011801 ~2003!
In all simulations of crazing, an initial isotropic state in
cubic simulation cell of edge lengthL is created using stan
dard techniques@29#. Polymer chains are constructed as ide
RWs with a suitably chosen persistence lengthl p . l p is fixed
by matching the radius of gyration of the chains to the eq
librium value in the melt, and the values arel p

fl51.65a and
l p
sfl52.7a for flexible and semiflexible chains, respective

Subsequently, the interaction potentials are imposed and
system is cooled at constant volume from a melt tempera
Tm51.3u0 /kB to the desired run temperature.

All runs begin at zero hydrostatic pressure. Strainse i j are
then imposed by rescaling the simulation box periodsLi and
all particle coordinates proportionately@31#. This allows the
study of the arbitrary stress states in Sec. IV.

IV. CRITERIA FOR CAVITATION AND CRAZE
NUCLEATION

The loading conditions on the polymer glass determ
whether it will fail initially by shear yielding or the forma
tion of voids and cavities. In general, strong triaxial tens
stresses will favor cavitation. Cavitation and crazing a
closely related because crazes usually require the initial
mation of microvoids@8#. We, therefore, first address th
initial failure of the polymer glass through either shear yie
ing or cavitation, and later discuss the formation of craze

The loading conditions that lead to shear yielding in ma
experimental polymers@32,33# are most accurately repre
sented by the pressure-modified von Mises yield criterion
is formulated in terms of simple stress invariants, the hyd
static pressurep52(s11s21s3)/3, and the deviatoric or
octahedral shear stresstoct5@(s12s2)21(s22s3)21(s3
2s1)2#1/2/3, wheres i denote the three principal stress com
ponents. The pressure-modified von Mises criterion sta
that yield will occur at an octahedral yield stresstoct

y given
by

toct
y 5t01ap, ~9!

wheret0 is the yield stress at zero hydrostatic pressure ana
is a dimensionless constant. The physical motivation of
~9! is that the elastic free energy stored in shear deforma
is proportional totoct

2 and failure should occur when thi
energy exceeds a threshold that rises slowly withp.

In Ref. @34#, we examined a much larger range of stre
states than in previous experimental studies and showed
the pressure-modified von Mises criterion provides a go
description of shear yielding in our bead-spring model. D
for two extremal temperatures are replotted in Fig. 3 alo
with solid lines showing fits to Eq.~9!. Shear yielding was
observed to the right of the dot-dashed line, and these
points follow Eq.~9! quite accurately. To the left of the line
cavitation was observed. The deviation from the von Mis
fits is very sharp, andtoct quickly drops to zero. The value
of toct

c where cavitation occurs are well described by
straight line

toct
c 5t0

c1acp, ~10!
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with new constantst0
c and ac. This new ‘‘cavitation crite-

rion’’ can be motivated in analogy to the von Mises criterio
by assuming that the elastic free energyFV associated with
volume changes must reach a critical value for cavitation
occur.FV is proportional top2, which gives a criterion of the
form p5p0. One can then assume that shear componen
the stress tensor aid cavitation in a linear fashion, i.e.p
5p01toct/ac , which can be rearranged to give Eq.~10!
with t0

c5acp0.
No clear experimental consensus exists about the st

state required to initiate crazing, partly because of the imp
tance of surface defects in nucleating crazes. However,
eral criteria for craze nucleation were proposed almost
years ago. They all try to take into account the critical role
tensile stress components. Sternsteinet al. @35# suggested a
craze yield criterion of the form

tmax[
1
2 us i2s j umax5A1B/p, ~11!

where A and B are constants that depend on temperatu
With respect to our criterion, Eq.~10!, p has been replaced
by 1/p and toct by the largest difference between any tw
stress components. Bowden and Oxborough@1# formulated a
similar criterion, wheretmax is replaced bys12ns22ns3
andn is Poisson’s ratio for the polymer glass. This expre
sion provides another possibility to describe the shear c
ponents of the stress state, and it reduces totmax when n
51/2 ands25s3. The Sternstein and the Bowden and O
borough expressions could, in principle, also be fitted to
rather narrow range of pressure in Fig. 3 where cavitat
occurs. However, we are unaware of a convincing phys
motivation for the 1/p term, which leads to obvious analyt
cal problems at smallp. In addition, the experimental result
that motivated Eq.~11! are sensitive to surface defects@13#.

The above considerations pertain to theinitial mode of
failure of the polymer glass at strains typically less th

FIG. 3. Octahedral shear stresstoct
y at yield as a function of

pressurep at two different temperaturesT50.3u0 /kB ~open sym-
bols! andT50.01u0 /kB ~filled symbols!. The solid lines are fits to
Eq. ~9! and the dashed lines show the onset of cavitation. Value
a are indicated for the two temperatures. Also drawn is a dotted
that separates the regions of shear and cavitational failure. H
yield is associated with the strain wheretoct peaks.
1-4
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GROWTH, MICROSTRUCTURE, AND FAILURE OF . . . PHYSICAL REVIEW E 68, 011801 ~2003!
10%. However, crazing is a large strain deformation w
strains of several hundred percent. Although we find void
to be a necessary precursor to crazing, it is not guaran
that a loading state that leads to cavitational failure accord
to Eq. ~10! will ultimately produce stable crazes. Likewise
we have observed that an initial failure through shear de
mation may be followed by void formation and crazing. O
should thus strictly call Eq.~10! a cavitation failure criterion
and not a craze yielding criterion.

V. GROWTH OF CRAZES

In order to induce crazing, we enforce cavitation by e
panding the periodic simulation box in thez direction at
constant velocity while maintaining the simulation box pe
ods in the perpendicularx-y plane. This leads to an initia
stress state where all three principal stresses are tensile.
initial voids formed during cavitation expand upon furth
straining, but their growth rapidly becomes arrested@10#.
Instead of forming new voids, additional material is draw
out of the uncavitated polymer, and stable craze growth
curs. In our simulations, growth continues until all the ma
rial in the simulation box is converted into the craze.

A. Images of crazes

A good impression of the crazing process can be obtai
by inspecting the snapshots of the simulation cell shown
Figs. 4–6. Each slice has a lateral width of 64a, and three
different strains are shown. In all images, the chain len
N5512. Previous studies@10# had shown thatN has to be

FIG. 4. Three snapshots of craze growth for flexible chains w
T50.1u0 /kB and r c51.5a. The total system contains 262 14
beads, but only slices of thickness 10a normal to the page are
shown in order to resolve the fine structure. The lateral dimens
of each slice is 64a and the vertical direction is to scale. Each d
represents one Lennard-Jones bead.
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twice the entanglement length or greater in order to fo
stable crazes. For shorter chains, the material cavitates,
then rapidly fails due to chain pullout. In the following, w
only consider chains withN>2Ne .

Note first that in all cases, there is a sharp interface
tween dense polymer and crazed material. This narrow ‘‘
tive zone’’ is one of the key features of craze phenomenolo
found in experiment. In the craze, the polymer chains ha
merged into fibrils that are strongly aligned. However, t
structure is quite complex, since there are many lateral c
nections between fibers.

One can also observe that the fine structure of the cra
in the three sequences varies greatly. Figure 4 with flexi
chains at the low temperature ofT50.1u0 /kB and the weak
adhesive interaction~cutoff distancer c51.5a) shows many
thin fibrils, whereas the fibrils in Fig. 6 at the higher tem

h

n

FIG. 5. Three snapshots of craze growth for semiflexible cha
with T50.1u0 /kB , r c51.5a, and 262 144 beads.

FIG. 6. Three snapshots of craze growth for semiflexible cha
with T50.3u0 /kB , r c52.2a, and 262 144 beads.
1-5
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J. ROTTLER AND M. O. ROBBINS PHYSICAL REVIEW E68, 011801 ~2003!
perature ofT50.3u0 /kB and the stronger adhesive intera
tion r c52.2a are much thicker in diameter. These trends
not surprising, because increased chain mobility at hig
temperatures and stronger adhesive interactions should
the system to larger fibril diameters, which minimize t
surface area.

B. The drawing process and stress-strain curves

A second characteristic feature of craze growth is t
deformation occurs at a constant plateau or drawing stresS.
This plateau can be easily identified in the stress-st
curves shown in Fig. 7. The curves can be separated
three different regimes. In regime I, the stress rises to a p
of ;2.6u0 /a3 and then drops when the polymer yields
cavitation. Following cavitation, the stress rapidly relax
and remains at the plateau valueS in regime II, the growth
regime. Regime II is much shorter in the semiflexible ca
Fig. 7~b!, than in the flexible case, Fig. 7~a! ~note different
lateral scales!. Regime II ends when the strainLz /L reaches
the extension ratiol. At this point, all the material in the
simulation cell has been converted into the craze, and
additional deformation strains the entire craze uniformly.
a consequence, the stress rises again in regime III. This
gime finally ends in catastrophic failure either through ch
disentanglement or chain scission~see Sec. VII!.

Note first that neither the peak stress at cavitation nor
value of S depends on the chain lengthN. The curves for

FIG. 7. Stressszz in the widening direction during craze growt
at T50.1u0 /kB , r c51.5a for ~a! flexible and ~b! semiflexible
chains of lengthN5128, N5256, N5384, andN5512. Three
characteristic regimes: I, cavity nucleation; II, craze growth; and
craze failure are also indicated. The two perpendicular stress c
ponentssxx and syy also peak at cavitation~see text!, but then
rapidly drop to zero. Curves obtained at other values ofT andr c are
qualitatively identical.
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different N in Fig. 7 only split apart after the completion o
craze growth whenLz /L reachesl and the entire craze is
strained. Baljon and Robbins@10# showed that the peak
stress remained constant for much shorter chains, but
regime II only appeared whenN was 2Ne or longer. Another
important fact to note is thatS is independent of system size
For example, values ofS in systems ranging between 32 76
and 1 048 576 beads are the same within a few percent.
only substantial change with increasing system size is
temporal fluctuations inS decrease.

In Fig. 8~a!, we analyze trends ofS with T and r c . The
drawing stress decreases linearly with increasing tempera
and increases with increasing adhesive interactions~i.e., in-
creasingr c). Figure 8~b! shows thatS varies logarithmically
with the widening velocityv over two orders of magnitude
which is indicative of a thermally activated process. For t
subsequent figures, we choosev50.06a/tLJ , which is at the
upper end of the logarithmic regime@10#. Logarithmic rate
dependence is also found for the shear yield stress of gl
polymers@34,36#.

C. Crazing under plane stress conditions

The results of Sec. IV show that cavitation only occu
when all three principal stresses are tensile. Many exp
mental crazes grow in a thin film geometry under pla
stress conditions. However, in these experiments the craz
often prenucleated or nucleates near a defect@13#. This situ-
ation can also be mimicked in our simulations. To this e
the periodic boundary conditions in thex direction were re-
placed with free boundaries, so that the solid is free to re

,
m-

FIG. 8. ~a! Trends ofS with T and r c at v50.06a/tLJ for flex-
ible (j) and semiflexible (m) chains andr c51.5a ~lower curves!
andr c52.2a ~upper curves!. ~b! Velocity dependence ofS for flex-
ible chains atT50.1u0 /kB . The straight line is a fit to a logarith
mic velocity dependence,Sa3/u051.08510.048ln(vtLJ /a). Un-
certainties are comparable to symbol sizes.
1-6
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in that direction. Initial failure is then nucleated by placin
1000 purely repulsive LJ beads in the center plane of
simulation cell located atz5Lz/2 @37#. This weakens the
solid locally and constrains the location of initial failure
while not affecting subsequent craze growth.

Figure 9 shows three snapshots of a craze in this ge
etry. As in experiments, necking is observed at the craze-b
interface. Althoughsxx vanishes in the rest of the film, th
neck produces strong tensile stresses in all three direction
the active zone. The craze grows in the same manner a
the simulations with three-dimensional~3D! periodic bound-
ary conditions. Since the latter yield better statistics for
craze structure, we have focused on this methodology for
analysis.

D. The extension ratio

The extension ratiol can be calculated from the averag
densities of crazed and uncrazed materials. Figure 10 sh
how the density drops from the initial valuer i to r f in the
craze. As can be seen,r f is higher for the semiflexible
chains, which have a smaller value ofNe'30. Remarkably,
we find thatl is a function ofNe only and decreases with
decreasingNe . For instance, while an increase inT and r c
produces dramatic coarsening of the fibril structure in Fig
relative to Fig. 4,l is unchanged. We obtain values oflfl
56.060.6 andlsfl53.560.3 independent ofN, T, and ad-
hesive interaction strength.

In order to understand the dependence of the macrosc
quantity l on Ne , we analyze the structural changes in t

FIG. 9. Cross sections through a craze with a free interface
T50.1u0 /kB , r c51.5a, and 262 144 beads. Periodic bounda
conditions were maintained in the direction into the plane. The
cation of initial cavitation was constrained by placing repulsi
beads in the center plane atz5Lz/2. The lateral dimension is 47a
and the vertical dimension is to scale.
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polymer glass during deformation on a microscopic le
~see also Ref.@11#!. Figure 11~a! shows the average fina
position of beads in the completely evolved craze as a fu
tion of their initial positions along the direction of expansio
(z axis!. The average was taken over all beads with init
heights in a bin of width 1a. Although the strain rate is
strongly localized during the craze process, the ultimate
placement profile is linear,zf5lzi .

To measure deviations from a purely affine~uniform! de-
formation, we evaluated the rms variationdz in zf for beads
in each bin. This quantity is indicated by error bars in F
11~a!. Note that the variation in each bin is very reprodu
ible. We find thatdz is nearly independent ofT and r c and
has values of the order of 19a and 9a for flexible and semi-
flexible chains, respectively.

Since no strain is applied in the perpendicularx and y
directions, one would assume that there is, on average
displacement in these directions. That this is indeed the c
is shown in Fig. 12, which repeats the analysis of Fig. 11
the x direction. Average final bead positions are identical
initial positions, but there are lateral variationsdx that are
indicated by error bars. These lateral displacements allow

at

-

FIG. 10. Density profile through the active zone for crazes w
flexible chains (Ne'70) and semiflexible chains (Ne'30). Hori-
zontal lines indicate the average density in the craze for the
cases.

FIG. 11. ~a! Final bead heightszf as a function of initial heights
zi for flexible ~large slope! and semiflexible~small slope! chains
(T50.1u0/kB , r c51.5a). Averages were calculated overz intervals
of width a. Straight lines have slopel55.9 andl53.5, respec-
tively. Error bars represent a standard deviationd z from the aver-
ages in each layer and are of the order of 19a ~flexible! and 9a
~semiflexible!. ~b! Square of the height changeDz as a function of
the number of covalent bondsDN between a bead and the cha
center. Dashed straight lines have slopel2l pl 0/3 with l from ~a!.
Deviations from the RW scaling occur in the vicinity of the cha
ends~not shown!. Other systems at differentT, r c , andN show the
same results.
1-7
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J. ROTTLER AND M. O. ROBBINS PHYSICAL REVIEW E68, 011801 ~2003!
chains to gather in fibrils at the initial density to minimiz
surface area. Unlike the vertical displacementsdz, these lat-
eral displacements depend strongly onT and r c . For ex-
ample,dx;2.5a for the fine structure shown in Fig. 4 wher
many thin fibrils can be seen, whiledx;5.6a for the much
coarser structure of Fig. 6. In general,dx correlates with the
spacing between fibrils as discussed in Sec. VI and is
than di . Krupenkin and Fredrickson@7# suggested thatdi
provides an upper bound for the lateral chain deformatio

We now examine changes in the conformation of in
vidual chains. In the initial state, the polymer chains exh
an ideal random walk structure inherited from the melt. T
average end-to-end vector^R2& thus scales with the numbe
of covalent bonds connecting two beadsDN as ^R2&
5 l pl 0DN. The component along each direction is 1/3 of th
value since the initial state is isotropic. Figure 12~b! shows
this initial scaling behavior for̂Dx2& ~dashed line! and that
^Dx2& is not affected by crazing~solid line!.

After an affine deformation byl alongz, one would have
an anisotropic RW with no change inDx or Dy, but ^Dz2&
5l2l pl 0DN/3. Figure 11~b! shows the actual behavior~solid
lines! of ^Dz2& in the craze. At large scales, it exhibits th
expected scaling for an affine deformation~dashed lines!.
However, the separation between beads is fixed by the le
of the covalent bonds, so the deformation of individual po
mers alongz cannot be purely affine. At small scales, t
linear scaling behavior of̂Dz2& crosses over into a quadrat
behavior, which indicates that the polymer has been pu
taut on this scale. The typical number of beads in suc
straight segmentÑst can be calculated by letting (Ñstl 0)2

5^Dz2&5l2l pl 0Nst/3 at the crossover point, which yield
Ñst5l2l p/3l 0. Inserting the observed values ofl, l p , and
l 0, we arrive atÑst

fl 52164 and Ñst
sfl51262, respectively.

These values are comparable to the values ofdz found in
Fig. 11~a!. On this scale, the deformation is nonaffine.

The length of taut sections can also be determined
direct analysis of the chain geometry. To this end, we ca
late the angle between every covalent bond and thez axis
and label a bond as pointing up~down! if the angle is within

FIG. 12. Analysis of bead positions analogous to the previ
figure~same systems!, but for thex positions. No strain is applied in
this direction, and the straight lines in panel~a! have slope one. The
curves for the semiflexible chains in~a! were displaced vertically
upward by 10a to avoid overlap. Error bars represent a stand
deviationdx from the averages, and are of the order of 3.7a ~flex-
ible! and 2.2a ~semiflexible!. ~b! Bead displacements as a functio
of distance from the chain center in bond lengths,DN, along the
chain. Dashed lines have slopel pl 0/3.
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45° of the z (2z) axis. We then count the numberNst of
consecutive up~down! steps. The probabilityP(Nst) of find-
ing a straight segment containingNst steps is shown in Fig.
13~a!. For both flexible and semiflexible chains, the distrib
tion develops an exponential tail. Likel, this tail is indepen-
dent of N, T, and r c . The characteristic length scales th
arise from these tails areÑst

fl;24 and Ñst
sfl;13, in good

agreement with the prediction from the RW argument. Fig
13~b! shows that very similar length scales arise from
equivalent analysis of the decay of the correlation funct
for the z component of successive bonds.

In Sec. II B 1, we introduced the standard scaling arg
ment, Eq.~2!, that relates the extension ratio and entang
ment length, which has been verified experimentally w
great success. In our cases, it predictslmax

fl 56.5 andlmax
sfl

53.5, which agree with the observed values ofl. However,
the argument was motivated by the idea that segments
tween entanglements become fully stretched and thus it
pears to be at odds with the finding of an average stra
segment length of onlyNe/3 rather thanNe . This discrep-
ancy is resolved by realizing that since the deformation
uniaxial, only the projection ofdi onto thez axis,dicos(Qz),

s

d

FIG. 13. ~a! Probability distribution of straight segments o
length Nst for flexible ~upper curves! and semiflexible~lower
curves! chains. Solid lines correspond to simulations atT
50.1u0/kB , r c51.5s,N5512 with 1 048 576 beads, and the dotte
lines were obtained atT50.3u0/kB , r c52.2s,N5512 with

262 144 beads. The straight lines show fits to exp(2Nst /Ñst
(s)fl). ~b!

z component of the bond-bond correlation function for the sa
systems. Thin solid lines show exponential fits with the indica
decay lengths.
1-8
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GROWTH, MICROSTRUCTURE, AND FAILURE OF . . . PHYSICAL REVIEW E 68, 011801 ~2003!
is expanded, whereQz is the angle betweendi and thez axis.
Theaverageprojection is thus only 1/A3 of the total length.
Indeed, it was already noted in an earlier work@15# that, due
to this geometric factor,l should beA3lmax for fully
stretched chains. However, this result is less cited sincl
'lmax in many systems and, until our work, there was
reason to expect the length of straight segments to beNe/3.

The emergence of the length scaleNe/3 is a consequenc
of the random nature of the entanglement mesh. Clearly
strands would be expanded simultaneously by the same
tor in a regular mesh as reported in a simulation study
Stevens@27#. In contrast, in the polymer glass only the se
ments that are initially aligned with the stretching directi
become fully stretched. These fully stretched segments
able to prevent further extension, because the entanglem
act similar to chemical crosslinks. Barsky and Robbins h
confirmed the equivalence between entanglements
crosslinks by adding permanent crosslinks randomly to
system@38#. The length between constraints then decrea
from Ne , and lmax decreases accordingly. They foundl
'lmax in all cases and that the average stretched lengthNst
remains at 1/3 of the distance between constraints.

The success of the scaling argument, Eq.~2!, and the con-
stancy of the extension ratio imply that there is no app
ciable loss of entanglements in our simulations during cr
growth. Chains do not disentangle onceN.2Ne , and chain
scission~see also Sec. VII! is not observed during growth fo
any choice of parameters in our model.

E. Energy dissipation and stress transfer during crazing

The work done in transforming a volumedV of polymer
into a craze isdW5S(l21)dV. This work can either in-
crease the potential energydU or be dissipated as heatdQ.
The division between energy and heat is difficult to det
mine experimentally, but simulations with short chains fou
that both contributions were substantial@9#. We have mea-
sureddW and the energy change directly in our simulatio
and calculateddQ using the first law of thermodynamics
dQ5dU2dW. dU can be calculated directly from the bea
positions and interaction potentials. Table I shows the fr
tion dQ/dW of dissipated total work for a number of larg
systems. In all cases, a large percentage,;80%, of the total
work is dissipated, and only;20% is stored as potentia

TABLE I. Dissipation during craze growth and covalent cont
bution to the crazing stressS for several different systems of siz
262 144.

T r c N dQ/dW Cov. stress~%!

Flexible 0.1 1.5 256 0.88 87
Flexible 0.1 1.5 512 0.88 88
Semiflexible 0.1 1.5 256 0.71 95
Semiflexible 0.1 1.5 512 0.67 97
Flexible 0.1 2.2 512 0.92 69
Semiflexible 0.1 2.2 512 0.71 75
Flexible 0.3 2.2 512 0.87 61
Semiflexible 0.3 2.2 512 0.78 67
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energy. Since the craze drawing stress varies logarithmic
with velocity @see Fig. 8~b!#, these percentages could chan
with velocity. However, we find thatdU also decreases with
decreasing velocity, and there is no measurable change in
percentage of work converted to heat over at least two ord
of magnitude in velocity.

Stress in the craze can also be partitioned into two co
ponents that originate either from van der Waals~LJ! inter-
actions, Eq.~6!, or from covalent interactions, Eq.~7!. The
two contributions are very different in the uncrazed and
crazed material. In the undeformed polymer, the ten
stress is mainly carried by the vdW bonds. As one mo
through the active zone, most of the stress is transferre
the covalent bonds. Evidence for this is provided in Fig. 1
which shows the covalent and LJ contributions to the to
stress as a function of height in the widening direction. F
ure 14~a! displays the density profile in order to identif
dense polymer regions~high density! and craze regions~low
density!. In Fig. 14~b! one observes that in the dense regi
all the tension is carried by the van der Waals bonds and
covalent bonds are under slight compression. In the cr
60–95 % of the total stress~see Table I! is carried by the
covalent bonds, and the van der Waals bonds only contrib
a small fraction.

F. Problems with the capillary models

The results presented so far reveal serious difficulties w
the surface tension models discussed in the Introduction.
first evidence of this comes from the observation thatS is
independent of system size. In our smallest simulations
lateral width 32a, the simulation box only contains a few

FIG. 14. ~a! Density profile through a craze simulation atT
50.1u0 /kB andr c51.5a with flexible chains.~b! vdW stress~solid
line!, covalent stress~dashed line!, and total stressS ~thick line! as
a function of position alongz. The kinetic contribution to the stres
is split evenly between the covalent and the vdW stress here an
Table I.
1-9
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J. ROTTLER AND M. O. ROBBINS PHYSICAL REVIEW E68, 011801 ~2003!
fibrils at T50.1u0 /kB andr c52.2a. If Swere controlled by
Eq. ~4!, one should expect that the simulation box wou
need to contain a statistically significant number of fibrils
spacing^D0& for S to reach its steady-state value. Howev
the value ofSdoes not fluctuate as the lateral dimensions
increased to 64a or 128a.

The second and more severe problem concerns the d
bution of stress in the craze. The surface tension mode
sumes thatall the stress is carried at the interfaces of fibr
or in viscous stress in the active zone. However, Table I
Fig. 14 show that almost all the stress in the fibrils is carr
by the covalent bonds, while the surface tension is entir
associated with broken vdW bonds and small entropic c
tributions.

In the following, we make an alternative proposition
relate craze microstructure and drawing stress. This prop
tion is based on the observation that the values ofS and l
obtained from our simulations obey the equality

Sfllfl5Ssfllsfl5S0~T,r c ,v !. ~12!

This can be verified for eachT and r c using lfl56.0, lsfl
53.6, and values of S from Fig. 8. Since the fraction of a
occupied by the fibrils is 1/l, S0 is the local stress within the
fibrils.

FIG. 15. ~a! Stress-strain curves for crazes withl p51.65a,
2.2a, 2.7a, and 3.3a, in order of increasing height, atT
50.1u0 /kB , r c51.5a, andb50u0. The corresponding values ofl
are given in Table III.~b! Rescaling of the same data in the for
szzl versus (Lz /L21)/(l21). All curves collapse onto a com
mon plateauS05Sl'4.5u0 /kB of the same length.
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It is perhaps surprising that the value of local stre
needed to draw fibrils is independent of the entanglem
length. In order to further test Eq.~12!, it would be desirable
to consider additional values ofNe and thusl. Unfortu-
nately, reliable values forNe exist for only a few values ofb.
It is, however, not necessary to knowNe for the present
purpose, since bothS andl can be measured directly from
the craze simulation. Moreover, the entanglement len
should only depend upon the chain statistics@39#, and glassy
states with arbitrary statistics can easily be created. We c
firmed that simulations with the same persistence length
the undeformed glass gave the same values ofl andS inde-
pendent of whether the bond-bending potential@Eq. ~8!# was
included. Figure 15~a! compares stress-strain curves forb
50u0 at four values of the initial persistence length. Increa
ing l p lowersl and increasesS. However, Fig. 15~b! shows
that all curves can be collapsed ifszz is scaled byl and the
extension byl21. This confirms thatS0 is the stress tha
controls craze growth and only depends on the van der W
interactions. An experimental version of this test would
difficult, since it is hard to changeNe for real polymers with-
out changing the chemistry as well.

It is interesting to compare values ofS0 to the stresses
required for shear yielding and cavitation, which are a
independent of chain statistics. Table II compares these t
stresses for two ranges of the LJ potential. Here,b50u0, but
the bond-bending potential has almost no effect on the
ues. The three stresses are clearly correlated, decreasing
increasing temperature and decreasingr c . The local fibril
stress is always about twice the cavitation stress and ra
from 7 to 12 timest0. The implication is that local stress fo
drawing material into fibrilsS0 is related to the bulk yield
stresses, but it is difficult to determine the relative role

TABLE III. Measured values ofl, with uncertainties, as a func
tion of l p and the corresponding range of values ofNe and l pNe

inferred from Eq. ~2!. Runs were made atT50.1u0 /kB , r c

51.5a, andb50u0.

l p l Ne l pNe

1.65 6.060.6 50–76 83–124
2.2 4.560.5 37–57 81–127
2.7 3.560.3 29–41 78–111
3.3 3.060.3 25–37 83–122
5.55 2.060.2 19–28 105–155

TABLE II. Values of the shear yield stresst0, the yield stress
for cavitation pcav, and the local fibril stressS0 as a function of
temperature. Stresses are in units ofu0 /a3. Uncertainties are60.02
in t0, and about 10% in the other quantities.

r c51.5a rc52.2a
TkB /u0 0.3 0.1 0.01 0.3 0.1 0.01

t0 0.23 0.49 0.72 0.45 0.64 0.83
pcav 1.2 2.7 3.0 3.0 4.8 5.0
S0 2.9 4.5 5.2 5.9 8.0
1-10
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GROWTH, MICROSTRUCTURE, AND FAILURE OF . . . PHYSICAL REVIEW E 68, 011801 ~2003!
shear and cavity growth. It is interesting to note that
experimental values ofS0 /t0 for PS and PMMA are about 5
@15,40#, and it would be useful to have values of this ratio f
other polymers. A comparison topcav would also be interest
ing, but its value is sensitive to system size, strain rate,
inhomogeneities and it is difficult to measure experimenta

Given that previous results forNe @26,29,30# are consis-
tent with values inferred from the extension ratio@Eq. ~2!#,
our results forl as a function ofl p allow a rapid estimation
of Ne . Table III presents results for a wide range ofl p and
shows that the productNel p is constant within our error bars
Fetterset al. @39# have presented a model for the relati
between chain statistics andNe that predicts

Ne}
N3

^R2&3
, ~13!

where^R2&5 l pl 0N denotes the average end-to-end vector
the polymer chain and the proportionality constant only
pends upon density. This impliesNe} l p

23 , while our data is
clearly consistent with a simple inverse relationNe} l p

21 .
Equation~13! describes many experimental polymers, bu
is difficult to changel p without changing all the other pa
rameters in the equation. The flexible model (b50u0) is
known to be quantitatively inconsistent with Eq.~13! @26#,
which has been one motivation for studies of more rig
models. It would be interesting to have additional values
l p from melt simulations to test whether the inverse relat
betweenNe and l p found here holds more generally, and,
so, to understand its origin.

G. Width of the active zone

At the interface between dense polymer and craze, p
mer chains are locally mobilized and brought into the n
fibril structure. The region in which this motion takes pla
is called the active zone. In Fig. 2, the height of the act
zoneh was defined as the distance between the undefor
polymer layer and the void ceiling, and this layer was
sumed to behave like a strain-softened fluid. The main d
in density should occur over the height of the void ceili
;^D0&/2 @8#. In this section, we compare this simple pictu
to our simulations.

Figure 10 shows typical results for the density profile n
the craze boundary. For both flexible and semiflexible po
mers, the density drops over a region of width;20a. The
average strain rateė must be localized in the same regio
since ė52] ln r/]t. If the active zone advances at veloci

v, thenė56v] ln r/]z ~the sign depends on whether the t
or bottom interface is growing!. In Fig. 16~a!, we presentė
as a function of position alongz. Averages were taken ove
layers of height 1a. The curves shown correspond to the fo
different values ofl p used in the creation of the polyme
chains. As discussed above, this varies the entanglem
lengthNe . Curves were shifted byz0, which corresponds to
the center of the peak. At this point, the density is roug
halfway betweenr i and r f . Curves for very differentNe
essentially overlap with a width of;10a at half maximum
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and;20a at the base. The latter corresponds to the rang
rapid density change in Fig. 10.

The width of the region over which beads are mobiliz
was determined from the relative diffusion as a function
height. Figure 16~b! shows the standard deviation of di
placements in the lengthening directions(Dz). The curves
peak at the same location as the curves in Fig. 16~a!, but are
more asymmetric. In the direction of the dense polym
glass,s(Dz) and ė fall to zero over a comparable range.
contrast,s(Dz) shows a long exponential tail into the craz

with a characteristic decay lengthl̃ that varies with entangle

ment length. The fit values ofl̃ indicate that there is a defi

nite trend to larger values asNe increases, andl̃ tends to be
somewhat smaller thanNe . This result is not surprising, be
causeNe is the longest length scale over which particle m
bilization should occur. Standard deviations of the lateral d
placementsDx andDy are smaller, but show essentially th
same decay lengths.

The above analysis indicates that while the mobility of t
beads is constrained by entanglements, the regions of lo
ization of the strain rate and the density drop are related
the craze microstructure~see Sec. VI! . Typical values for
^D& and ^D0& are given in Table IV. From this,̂D0&/2
;10a which compares well to the width of the strain loca
ization peak at half maximum. Experimentally, the width
the active zone has been measured by a gold decoration

FIG. 16. ~a! Strain rateė as a function of distance from th
center of the peakz0 for four values ofNe ~see text!. Positive values
of z2z0 are in the direction of the crazed region. The length of t
dashes increases with decreasingNe . ~b! Standard deviations(Dz)
from the average displacements alongz in a given layer over a time
interval of 75tLJ . s(Dz) decays exponentially into the craze an
the straight lines show fits to this decay with characteristic len

scalesl̃ 548a, 35a, 27a, and 24a.
1-11
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TABLE IV. Structural parameters of model crazes. Size refers to the total number of beads
simulation. For the fibril spacing, results for^D& from both the scattering analysis and the cluster analy
~see text! are shown. The rms variations(D)/a was obtained from cluster analysis.

^D&/a ^D&/a
T rc Size Scattering Cluster s(D)/a ^D0&/a

Semiflexible 0.3 1.5 1283 6.1 5.1 9.4 18.4
Semiflexible 0.3 2.2 1283 11.3 6.8 13.1 25.0
Flexible 0.1 1.5 6431282 4.7 4.2 4.1 14.3
Semiflexible 0.1 1.5 6431282 4.8 4.0 5.5 12.8
Flexible 0.1 2.2 6431282 8.4 5.5 7.0 22.3
Semiflexible 0.1 2.2 6431282 8.2 5.3 9.5 19.8
Flexible 0.3 2.2 643 12.6 7.9 8.7 30.7
Semiflexible 0.3 2.2 643 11.1 6.5 10.4 23.5
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76
nique @8#. It was concluded that it lies between^D& and
^D0&, which agrees with our results.

VI. MICROSTRUCTURE OF CRAZES

Another fascinating aspect of crazes is their complex
crostructure. Figures 4–6 give an impression of the rang
length scales appearing in the voided fibril network. Clea
the picture of cylindrical fibers and void fingers~Fig. 2! is an
oversimplification. It is nevertheless helpful to build mo
realistic models starting from this simple scenario.

A. Structure factor

Experimentally, the standard measurement of the cr
microstructure is done via scattering experiments. The s
tering intensity in these measurements is proportional to
structure factor

FIG. 17. Contour plots of the structure factor of crazes with~a!
flexible chains,r c51.5a and~b! semiflexible chains,r c52.2a. The
temperature wasT50.1u0 /kB and the systems contained 1 048 5
beads. Colors range from black~high intensity! to white ~low inten-
sity!.
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S~k!5
1

N K (
j ,k

e2 ik•(r j 2rk)L ~14!

times the form factor for the monomers. Since the cra
structure has azimuthal symmetry, one decomposes the w
vector k into components parallel and perpendicular to t
fibrils. Contour plots ofS(k' ,ki) for two crazes are shown
in Fig. 17. The microstructure was varied by changing

FIG. 18. Integrated structure factor of crazes~a! at T
50.1u0 /kB , flexible chains withr c51.5a ~solid! and semiflexible
with r c52.2a ~dashed! and~b! at T50.3u0 /kB , flexible ~solid! and
semiflexible~dashed! chains withr c52.2a. The straight lines have
slope23. System sizes were 1 048 576 beads in~a! and 262 144
beads in~b!.
1-12
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cutoff lengthr c and chain flexibility. Both patterns are asym
metric with the intensity decaying much faster in the dire
tion parallel to the fibrils than perpendicular to them.

Most experimental setups integrate overki using slit col-
limation and measure the integrated structure factorS(k')
5*2`

` dkiS(k). In Fig. 18~a!, we plotS(k') as a function of
the magnitude ofk' for the same systems shown in Fig. 1
At large wave vectors, the curves rise to a peak at;2p/a
~not shown!, which corresponds to the typical separation
two beads. This length scale is so short that it is usually
resolved in typical experimental scattering plots shown
e.g., Ref.@20#. The characteristic feature ofS(k') is found at
smallerk' in the form of a power-law regime with expone
23. The extent of this scaling regime is bound at large wa
vectors by the small scale cutoff provided by the interparti
spacing and at small wave vectors by the distance to the
fibril. The power-law regime is more pronounced for t
crazes shown in Fig. 18~b!, which were created at highe
temperatures wherêD0& is larger.

B. Interpretation of scattering data

The traditional interpretation of craze scattering data
gins with idealizing a craze fibril as a straight cylinder
diameterD and lengthl along z. The scattering intensity is
then proportional to the squared magnitude of the form fac
for such a cylinder@20#,

F~k'!5
DrelpD2l 1/2

2

J1~pDk'!

pDk'

, ~15!

whereDrel denotes the electron density andJ1 is the first-
order Bessel function. Due to the asymptotic behavior
J1(x)5(2/px)1/2cos@x23p/4#1O(x21) for large argu-
ments, the scattering intensity of a single cylinder will e
hibit an oscillating power-law behavior,uF(k')u2}k'

23 . This
is also called Porod scattering.

In general, the fibrils do not have a single diameter,
rather a diameter distributionP(D). One can introduce an
average scattering intensity

I 0~k'!5^F~k'!2&5E
Dmin

Dmax
dDP~D !F~k'!2, ~16!

by averaging the form factor over the diameter distribut
and neglecting the correlations between fibrils. The main
fect is to smooth out the oscillations so that a straight pow
law tail results. The average diameter^D&5*DP(D)dD can
be obtained via a Porod analysis, in which one determi
the prefactora to the power-law tail,S(k')5ak'

23 . This
can be related tôD& @18,19# through

^D&5
Q

p3~121/l!a
, ~17!

whereQ5*dk'2pk'S(k') is a scattering invariant. Value
for ^D& obtained from this formula are collected in Table IV

The craze fibrils do not all have the same distance fr
each other, but have, in general, varying distances that ca
01180
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described by a radial distribution functiong(r ). This will
lead to interference effects in the scattering intensity that
be described by an interference functionj (k')
5I (k')/I 0(k')21. The interference function is related t
g(r ) by @20#

g~r !511
p^D&2l

4 E
0

`

2pk' j ~k'!J0~2prk'!dk' .

~18!

As a result, the power-law tail will be modified at small wav
vectors. In particular, the first peak ing(r ), corresponding to
a typical fibril separation̂D0&, should translate into a maxi
mum in I (k').

The Porod scattering lawuF(k')u2}k'
23 is well confirmed

at higher temperatures in Fig. 18~b!, while the power-law
regime is shorter at lower temperatures. Visual inspection
the craze images suggests that the straight cylinder app
mation is not so well justified in this case. Fibrils bran
more often and intersect thez axis at varying angles. At the
higher temperature, the chains are more mobile and can a
more easily, but they are still not ideal cylinders. We no
furthermore that the curves shown in the log-log plot of F
18 do not exhibit a clear maximum~a maximum would be
more easily identifiable in a linear plot like those norma
used for experimental results!. This suggests that the orde
ing of fibrils is mostly random without a clear characteris
separation. However, our statistics are limited by the sys
size at these large length scales.

C. Distributions of fibril diameter and spacing from
real-space analysis

In a previous analysis of scattering data@19# for polysty-
rene and polycarbonate crazes, Eqs.~15!–~18! were used to
extract the diameter distributionP(D) andg(r ) by means of

FIG. 19. Typical cross section through a craze from flexib
chains, r c51.5a, T50.1u0 /kB . The lateral dimension is 128a.
Fibrils appears as clusters of varying size, and the distribution
Fig. 20 are calculated form these cross sections~see text!.
1-13
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a detailed fitting procedure. The craze images shown ab
suggest thatP(D) is rather broad, and wide distributions fo
P(D) were found for both materials, with a significant in
crease in breadth for polycarbonate@20#.

Here, we access these distributions by a direct geom
cal analysis of the bead positions. To this end, we bin
particle positions onto a square grid with grid size 1a normal
to the widening direction and take lateral cross sections
height 1.5a. As illustrated in Fig. 19, a fibril now appears a
a two-dimensional connected cluster, whose areaA is taken
to be the sum of the areas of the occupied squares. We d
D5A4A/p.

Figure 20 shows the resulting distributions ofD. As ex-
pected,P(D) is very broad. The distributions for flexible an
semiflexible chains are very similar at smallD for a fixed
temperature, but differ for largerD. The tail of the distribu-
tions could be fitted to an exponential function, but our s
tistics are too small for a conclusive statement. Mean val
of the diameter are given in Table IV, together with the sta
dard deviations of the distributions. The large values of
latter suggest that̂D& has to be used with care when d
scribing the craze microstructure. Previously, Baljon a
Robbins reported similar values of^D&57a, s(D)511a for
flexible chains atT50.3u0 /kB and r c51.5a @10#.

The value of^D& obtained from the Porod analysis
always larger than the value obtained from the cluster~real-
space! analysis. Both values rise with increasing adhes
interaction and increasing temperature as expected. Ta
a;0.8 nm, diameters in our model crazes would corresp
to a range of̂ D&51.4–6.3 nm, which is at the small end o
the experimental range. The reason is that an artifici
small value of the surface tension and a high widening
locity v are used here. Both lower^D&, which allows us to
use smaller system sizes.

FIG. 20. Distribution of fibril diameters from analysis of con
nected clusters~see text! for the same crazes as in Figs. 18~a! and
18~b!. Solid lines refer to flexible chains and dashed lines to se
flexible chains.
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An estimate for the mean fibril spacing^D0& can be ob-
tained by equating the area per fibril,pD0

2/4, to the inverse
areal density 1/n, i.e.,^D0&52A1/np. The areal density was
obtained by counting the number of separate fibrils per cr
section. Values for̂D0& are also given in Table IV and trans
late into a range between 10 nm and 25 nm. The hig
numbers are comparable to experiment and are obtained
r c52.2a, which produces more realistic surface energies

In order to obtain the radial distribution function of th
fibrils, we continued the analysis described above and ca
lated the center of mass for each 2D cluster. The positi
given by this procedure were used to calculateg(r ) in Fig.
21. In general, these functions have very little structu
There is a size exclusion minimum at the origin, and t
curves have a weak first maximum around 10a. As the fibrils
become thicker, the location of the maximum shifts to larg
values. Qualitatively, similar curves were obtained from e
periment@20#, which confirms the basically random nature
fibril positions. The height of the maximum is too small to b
reflected in the scattering intensity.

VII. STRESS DISTRIBUTION AND CRAZE BREAKDOWN

In regime III of the stress-strain curve of Fig. 7, the ent
volume of the simulation cell has been converted to a cra
Elongation past the extension ratio causes uniform strain
of the craze and eventually leads to craze failure. Studie
this regime are directly relevant to crack propagation
glassy polymers~Fig. 1!. The stress in the craze region ris
from S at the active zone to a maximum valueSmax at the
crack tip. The elastic properties of the craze determine
rate at which the stress rises with distance, andSmax deter-
mines how large the craze region can become before
crack propagates@5#. These properties were recently o
tained from MD simulations and combined with continuu

i-

FIG. 21. Radial distribution functiong(r ) from analysis of con-
nected clusters~see text!. The systems shown are~a! T50.1u0 /kB

with r c51.5a, flexible (l) and r c52.2a, semiflexible (!); ~b!
T50.3u0 /kB , r c51.5a (l) andr c52.2a (!) ~both semiflexible!.
1-14
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theory to predict the macroscopic fracture energy@6#. Here,
we focus on the microscopic stress distribution and its re
tion to Smax.

A. Disentanglement versus chain scission

The craze can fail by two different mechanisms that
pend on the chain lengthN: short chains can disentangl
while very long chains fail through chain scission@6#. Both
limiting behaviors and the crossover between them can
addressed through our simulations. As can be seen in Fi
short chains of lengthN5128 form crazes that grow at th
constant plateau stressS, but the stress drops monotonical
to zero upon straining pastl. For longer chains, the stres
szz rises to a maximum valueSmax that exceedsS.

Values forSmax were systematically obtained as a functi
of normalized chain lengthN/Ne from curves such as thos
shown in Fig. 7. Figure 22 summarizes the breaking stre
for the craze fibrils normalized by the breaking stress in
limit of very long chainsS` . Smax is zero forN,2Ne , since
stable crazes do not form for such short chains.Smax/S̀ first
rises roughly linearly withN/Ne , and then saturates at unit
for chain lengths longer than about 10Ne . The saturation
coincides with the observation of significant amounts
chain scission. Interestingly, the data seems to collapse
a single curve~solid line!.

Note that the maxima of the stress-strain curves in Fig
are reached at strains of;6 and;10 for flexible and semi-
flexible chains, respectively. These values are close
A3lmax, which implies that at the breaking point the chai
are pulled fully taut between entanglement points. This w
confirmed by a direct analysis of the craze microstructur

Chain end relaxation

In order to understand the crossover regime and the c
petition between the two failure mechanisms, it is usefu
study the distribution of tension along a given chain. Figu
23 shows the tension as a function of distance from the ch
end at several stages of craze breaking. Since the chain
are identical, symmetry was used to improve statistics. In
unstrained craze~lowest curves!, both flexible and semiflex-
ible systems exhibit a constant stress in the center of

FIG. 22. Saturation of fibril breaking stresses in systems of s
262 144 beads atT50.1u0 /kB . S` denotes the maximum satura
tion stress in the limit of very long chains. The solid line is
2exp(2N/4Ne11/2) ~see text!. Squares indicate flexible chain
(Ne.64) and triangles indicate semiflexible chains (Ne.32).
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chain, but a relaxation toward the free ends. The charac
istic length scales for this relaxation were extracted by fitt
an exponential decay to the transition region. The values
the decay lengthsNend

fl 521 andNend
sfl 513 are comparable to

the characteristic length ofNe/3 for stretched segments, bu
are not universal. Stronger adhesive interactions were fo
to increaseNend

(s)fl . Upon straining the craze, the tension in t
center of the chains and the values ofNend

(s)fl rise. At the break-
ing point ~last curves!, the end relaxation extends over
length scale comparable to the entanglement length.

These results help in formulating a simple argument
the universal curve plotted in Fig. 22. The average dista
of an entanglement point from the chain end isN/4. We
assume that the probability of disentanglement decrease
ponentially with distance from the chain end, as sugges
by the tension relaxation curves. The characteristic len
scaleNend at the breaking point in these curves was of t
order of Ne . Because of the above, we expect this leng
scale to be the characteristic decay length for the probab
of disentanglement, and thus postulate a disentanglem
probability of the form exp@2(N22Ne)/4Ne#. Here,N was
reduced by 2Ne , since for this chain length the disentangl
ment probability is one and the chain is free on either si
The maximum stress can now be written as the limiti
value of S` times the probability for nondisentanglemen
which gives

e

FIG. 23. Distribution of tension along the~a! flexible and~b!
semiflexible chains (N5512). The lowest curves correspond to th
unstressed craze and the highest curves show the tension a
breaking point. Two intermediate stages are also shown. The
sion has a constant valuef c in the center and relaxes towards th
end with a characteristic length scaleNend that increases with strain
Values for Nend were obtained by fitting the part of the curve
shown as thick lines to an exponential relaxation of the fo
f / f LJ5 f c2a0 exp(2N/Nend).
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Smax/S`512exp@2~N22Ne!/4Ne#. ~19!

Figure 22 shows that this curve agrees well with the dat

B. Global tension distribution

The parameter governing chain scission and thus
value of S` is the distribution of tension in the polyme
craze. In a previous paper@11#, we reported that this distri
bution is characterized by an exponential tail at large ten
forces, in analogy to jammed systems such as granular
terials@41#. This distribution is shown in Fig. 24 for flexible
and semiflexible chains of lengthN5512 and several strain
states. The tensile~positive! part of the distribution is well
fitted by 1/̂ f &exp@2f/^f&#, where only the positive tension
are included in the average^ f &. Note that̂ f & is the same for
flexible and semiflexible chains at the plateau. The distri
tion with the steepest slope~smallest̂ f &) corresponds to the
fully developed craze. Additional curves with higher^ f & cor-
respond to stressed crazes at the same strain with respe
the unstrained craze. Note that the semiflexible and flex
crazes have the same values of^ f & at each strain. This is
related to the fact that the stressS0 in the fibrils is indepen-
dent ofNe ~see Sec. V F!. The last curve shows the tensio
distribution at the breaking point whereszz is largest~see
also Fig. 7!. The effect of straining the craze only chang
^ f &, and all curves collapse when normalized by^ f &.

We note that in our simulations, no scission or dise
tanglement occurs during craze growth proper. The frac
of bonds that break at a given average tension isPbr(^ f &)
5* f c

` exp@2f/^f&#df/^f&5exp@2fc /^f&#. In our simulations,f c

FIG. 24. Distribution of tension in crazes of size 262 144 be
with N5512 for ~a! flexible and ~b! semiflexible chains. Strain
states correspond to the ones shown in Fig. 23. The values fo^ f &
are 2.9, 4.9, 7.6, and 11.8f LJ , respectively.f LJ52.4u0 /a3 is the
breaking force of the LJ interaction. The straight lines correspon
exp@2f/^f&#/^f&.
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5100f LJ as described in Sec. III. The onset of scission c
be estimated using a simple scaling argume
NbondsPbr(^ f &);1. From this we estimate an average val
of the tension at breaking,

^ f &5 f c / ln Nbonds. ~20!

For Nbonds.262 144, this implies that scission will occu
when^ f &.8.0f LJ , which was confirmed by a direct inspec
tion of the chains at the corresponding strains. Such h
tensions only occur when the craze is strained past the
tension ratio. The largest value of^ f & observed with the
present model during craze growth was 4.5f LJ and occurred
at very low temperatureT50.01u0 /kB and r c52.2a.

The degree of chain scission in experimental crazes is
a matter of debate, but it appears likely that at least so
chains do experience scission. The absence of scission in
present study is most likely due to the low monomeric fr
tion coefficient of the bead-spring model. As the above ar
ment showed, a relatively modest increase in the aver
tension will quickly lead to appreciable scission. More re
istic polymer models should be able to capture this effect.
increase in system size will likewise raise the number
broken bonds. For a typical value of^ f &53 f LJ , one bond
would break for every 1015 bonds. Note that the exponentia
tension distribution leads to a logarithmic size dependen
Eq. ~20!, and allows for sequential bond breaking. The fibr
are thus much weaker than implied by the common sim
assumption that all bonds carry the same tension and b
when ^ f &5 f c .

VIII. SUMMARY AND CONCLUSIONS

This paper presented molecular dynamics simulations
craze nucleation, widening, and breakdown. Initial failure
the LJ polymer glass occurred through shear in biaxial lo
ing. Only when all three principal stresses were tensile
cavitation and craze formation occur. However, once past
nucleation phase, plane stress conditions are sufficient
continuing craze growth. Cavitational failure could be fitt
to a cavitation criterion of the formtdev

c 5t0
c1acp.

Craze widening proceeds in the simulations by a clea
identifiable fibril-drawing process. This interpretation is al
well supported by experiments. The resulting craze mic
structure is compellingly similar to TEM images of expe
mental crazes, and the length scales quantified by^D& and
^D0& are within experimental limits. The simulations clear
establish the connection between extension ratio and
tanglement length. In the glass, disentanglement is preve
and the entanglements act like chemical crosslinks. A mic
scopic analysis of the length of stretched chain segments
shown that, unlike the case of a regular mesh, only a
segments are fully expanded to the entanglement length,
the average extension is onlyNe/3. The factor 1/3 arises
from averaging over all angles that a given segment can f
with the stretching direction.

Another salient finding of this study is the exponent
distribution of tension in the craze. The presence of la
stress fluctuations makes chain scission much more lik

s

to
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than, e.g., a Gaussian distribution or uniform loading. Sin
force distributions of this kind are also often seen in conv
tional jammed systems such as foams, colloids, and gran
media, we have suggested@11# that a craze can be viewed a
a system that jams under tension.

The highly nonequilibrium nature of the force distrib
tion, and the strong concentration of stress in the cova
backbone bonds, formed the basis for our critique of
conventional capillary model of craze widening. The po
mer glass is not a viscous fluid in the active zone and
hydrodynamic description does not apply. The picture s
gested by our simulations is that crazing is a form of loc
ized shear deformation, but with a much greater mobilizat
of material than in the standard shear yielding. The v
similar rate and temperature dependences ofS is another in-
dication of the close relation between the processes. Ba
on trends observed in the simulations, we have sugge
that the local stress in the fibrilsS05Sl is independent of
the entanglement length.S0 varies with temperature and th
strength of adhesive interaction in a manner very similar
the yield stresses for shear and cavitation. Establishing a
cise connection between these characteristic stresses s
be a most interesting direction for future work.

A detailed analysis of the microstructure of crazes w
also presented. The calculated structure factor is simila
measured scattering intensities. As in these experimen
Porod analysis was used to extract a measure of the m
fibril diameter^D& from the structure factor. While the ex
tension ratio depends only onNe , the mean fibril diameter
depends on many factors. The value of^D& increases with
th
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increasingT and with increasing strength of the van d
Waals interactions. Chain stiffness has less effect, altho
^D& is larger for flexible chains than for semiflexible chai
at high temperatures.

The distribution of fibril diameters was determined fro
the real-space structure of the crazes. The average fibri
ameter from this method was always smaller than that de
mined from the structure factor. The distribution was a
very wide with a variance that exceeded the mean and a
extending to many times the mean. The radial distribut
function for the fibrils shows almost no correlation, mere
an exclusion minimum near the origin. Fibrils merge a
split with each other directly, rather than being joined
smaller cross-tie fibrils.

The simulations described here capture the generic
tures of experiments on many different polymers and prov
previously inaccessible information about the dynamics a
microstructure. However, they are unable to address qua
tative behavior of specific polymers. Future studies w
chemically realistic potentials will be of great value, but r
quire orders of magnitude more computational effort.
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